Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{[f(1)=-3],[f(n)=2*f(n-1)+1]:}

f(2)=

{f(1)=3f(n)=2f(n1)+1f(2)= \begin{array}{l}\left\{\begin{array}{l}f(1)=-3 \\ f(n)=2 \cdot f(n-1)+1\end{array}\right. \\ f(2)=\square\end{array}

Full solution

Q. {f(1)=3f(n)=2f(n1)+1f(2)= \begin{array}{l}\left\{\begin{array}{l}f(1)=-3 \\ f(n)=2 \cdot f(n-1)+1\end{array}\right. \\ f(2)=\square\end{array}
  1. Question Prompt: The question prompt is asking us to find the value of f(2)f(2) given the recursive function f(n)=2f(n1)+1f(n) = 2 \cdot f(n-1) + 1 with the initial condition f(1)=3f(1) = -3.
  2. Initial Condition: We know that f(1)=3f(1) = -3. To find f(2)f(2), we use the recursive formula f(n)=2f(n1)+1f(n) = 2 \cdot f(n-1) + 1 with n=2n = 2.
  3. Recursive Formula: Substitute n=2n = 2 into the recursive formula to get f(2)=2f(21)+1f(2) = 2 \cdot f(2-1) + 1.
  4. Substitute n=2 n = 2 : Calculate f(2) f(2) using the value of f(1) f(1) : f(2)=2f(1)+1=2(3)+1 f(2) = 2 \cdot f(1) + 1 = 2 \cdot (-3) + 1 .
  5. Calculate f(2)f(2): Perform the multiplication and addition: f(2)=2(3)+1=6+1f(2) = 2 \cdot (-3) + 1 = -6 + 1.
  6. Perform Multiplication and Addition: Simplify the result to get the final value of f(2)f(2): f(2)=6+1=5f(2) = -6 + 1 = -5.

More problems from Evaluate recursive formulas for sequences