Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{[f(1)=-16],[f(n)=f(n-1)*(-(1)/(2))]:}

f(3)=

{f(1)=16f(n)=f(n1)(12) \left\{\begin{array}{l}f(1)=-16 \\ f(n)=f(n-1) \cdot\left(-\frac{1}{2}\right)\end{array}\right. \newlinef(3)= f(3)=

Full solution

Q. {f(1)=16f(n)=f(n1)(12) \left\{\begin{array}{l}f(1)=-16 \\ f(n)=f(n-1) \cdot\left(-\frac{1}{2}\right)\end{array}\right. \newlinef(3)= f(3)=
  1. Find f(2)f(2): To find f(3)f(3), we need to apply the recursive formula twice, starting with the given value of f(1)f(1).\newlineFirst, let's find f(2)f(2) using the recursive formula:\newlinef(n)=f(n1)((12))f(n) = f(n-1) \cdot \left(-\left(\frac{1}{2}\right)\right)\newlinef(2)=f(1)((12))f(2) = f(1) \cdot \left(-\left(\frac{1}{2}\right)\right)\newlinef(2)=16((12))f(2) = -16 \cdot \left(-\left(\frac{1}{2}\right)\right)\newlinef(2)=8f(2) = 8
  2. Find f(3)f(3): Now that we have f(2)f(2), we can find f(3)f(3) using the same recursive formula:\newlinef(n)=f(n1)(12)f(n) = f(n-1) \cdot \left(-\frac{1}{2}\right)\newlinef(3)=f(2)(12)f(3) = f(2) \cdot \left(-\frac{1}{2}\right)\newlinef(3)=8(12)f(3) = 8 \cdot \left(-\frac{1}{2}\right)\newlinef(3)=4f(3) = -4

More problems from Evaluate recursive formulas for sequences