Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{[f(1)=-16],[f(n)=-29-f(n-1)]:}

f(2)=

{f(1)=16f(n)=29f(n1)f(2)= \begin{array}{l}\left\{\begin{array}{l}f(1)=-16 \\ f(n)=-29-f(n-1)\end{array}\right. \\ f(2)=\square\end{array}

Full solution

Q. {f(1)=16f(n)=29f(n1)f(2)= \begin{array}{l}\left\{\begin{array}{l}f(1)=-16 \\ f(n)=-29-f(n-1)\end{array}\right. \\ f(2)=\square\end{array}
  1. Given function and value: We are given the function f(n) and its value at n=11:\newlinef(1)=16 f(1) = -16 \newlinef(n)=29f(n1) f(n) = -29 - f(n-1) \newlineTo find f(22), we need to substitute n=22 into the second equation.
  2. Substituting n=22: Substituting n=22 into the function, we get:\newlinef(2)=29f(21) f(2) = -29 - f(2-1) \newlinef(2)=29f(1) f(2) = -29 - f(1) \newlineNow we can substitute the value of f(11) into this equation.
  3. Substituting f(11): Using the value of f(11) which is 16-16, we substitute it into the equation for f(22):\newlinef(2)=29(16) f(2) = -29 - (-16) \newlinef(2)=29+16 f(2) = -29 + 16 \newlineNow we perform the arithmetic operation to find the value of f(22).
  4. Calculating f(22): Calculating the value of f(22):\newlinef(2)=29+16 f(2) = -29 + 16 \newlinef(2)=13 f(2) = -13 \newlineWe have found the value of f(22).

More problems from Evaluate recursive formulas for sequences