Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{[f(1)=0],[f(n)=f(n-1)+2]:}
Find an explicit formula for 
f(n).

f(n)=

◻

{f(1)=0f(n)=f(n1)+2 \left\{\begin{array}{l} f(1)=0 \\ f(n)=f(n-1)+2 \end{array}\right. \newlineFind an explicit formula for f(n) f(n) .\newlinef(n)= f(n)= \newline______________

Full solution

Q. {f(1)=0f(n)=f(n1)+2 \left\{\begin{array}{l} f(1)=0 \\ f(n)=f(n-1)+2 \end{array}\right. \newlineFind an explicit formula for f(n) f(n) .\newlinef(n)= f(n)= \newline______________
  1. Given base case and formula: We are given the base case f(1)=0f(1) = 0 and the recursive formula f(n)=f(n1)+2f(n) = f(n-1) + 2. To find an explicit formula, we need to express f(n)f(n) in terms of nn without the need to calculate all previous function values.
  2. Calculate first few values: Let's calculate the first few values to see if we can identify a pattern:\newlinef(11) = 00 (given)\newlinef(22) = f(11) + 22 = 00 + 22 = 22\newlinef(33) = f(22) + 22 = 22 + 22 = 44\newlinef(44) = f(33) + 22 = 44 + 22 = 66\newlineIt seems that f(n)=2×(n1)f(n) = 2 \times (n - 1).
  3. Identify pattern: Let's check if our pattern holds for n=1n = 1:f(1)=2×(11)=2×0=0f(1) = 2 \times (1 - 1) = 2 \times 0 = 0, which matches the given base case.
  4. Check pattern for n=1n=1: Now let's check if our pattern holds for n=2n = 2:f(2)=2×(21)=2×1=2f(2) = 2 \times (2 - 1) = 2 \times 1 = 2, which matches the value we calculated earlier.
  5. Check pattern for n=2n=2: We can now generalize this pattern to find the explicit formula for f(n)f(n):f(n)=2×(n1)f(n) = 2 \times (n - 1).

More problems from Evaluate functions