Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[E=[[-1,3],[0,4]]" and "],[B=[[0,5,-2],[5,2,2]]]:}
Let 
H=EB. Find 
H.

H=[]

E=[1amp;30amp;4] and B=[0amp;5amp;25amp;2amp;2] \begin{array}{l} \mathrm{E}=\left[\begin{array}{rr} -1 & 3 \\ 0 & 4 \end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{llr} 0 & 5 & -2 \\ 5 & 2 & 2 \end{array}\right] \end{array} \newlineLet H=EB \mathrm{H}=\mathrm{EB} . Find H \mathrm{H} .\newlineH= \mathbf{H}=

Full solution

Q. E=[1304] and B=[052522] \begin{array}{l} \mathrm{E}=\left[\begin{array}{rr} -1 & 3 \\ 0 & 4 \end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{llr} 0 & 5 & -2 \\ 5 & 2 & 2 \end{array}\right] \end{array} \newlineLet H=EB \mathrm{H}=\mathrm{EB} . Find H \mathrm{H} .\newlineH= \mathbf{H}=
  1. Define Matrices EE and BB: Define the matrices EE and BB.\newlineMatrix EE is given as:\newlineE=[1amp;3 0amp;4]E = \left[\begin{array}{cc}-1 & 3\ 0 & 4\end{array}\right]\newlineMatrix BB is given as:\newlineB=[0amp;5amp;2 5amp;2amp;2]B = \left[\begin{array}{ccc}0 & 5 & -2\ 5 & 2 & 2\end{array}\right]
  2. Multiply Matrices E and B: Multiply matrix E by matrix B to find matrix H.\newlineTo multiply two matrices, we take the dot product of the rows of the first matrix with the columns of the second matrix. The product matrix H will have the same number of rows as the first matrix E and the same number of columns as the second matrix B.\newlineThe element in the first row and first column of matrix H (H[1,1]H[1,1]) is calculated as:\newlineH[1,1]=E[1,1]B[1,1]+E[1,2]B[2,1]H[1,1] = E[1,1]*B[1,1] + E[1,2]*B[2,1]\newlineH[1,1]=(1)0+35H[1,1] = (-1)*0 + 3*5\newlineH[1,1]=0+15H[1,1] = 0 + 15\newlineH[1,1]=15H[1,1] = 15\newlineThe element in the first row and second column of matrix H (H[1,2]H[1,2]) is calculated as:\newlineH[1,2]=E[1,1]B[1,2]+E[1,2]B[2,2]H[1,2] = E[1,1]*B[1,2] + E[1,2]*B[2,2]\newlineH[1,2]=(1)5+32H[1,2] = (-1)*5 + 3*2\newlineH[1,2]=5+6H[1,2] = -5 + 6\newlineH[1,2]=1H[1,2] = 1\newlineThe element in the first row and third column of matrix H (H[1,1]=E[1,1]B[1,1]+E[1,2]B[2,1]H[1,1] = E[1,1]*B[1,1] + E[1,2]*B[2,1]00) is calculated as:\newlineH[1,1]=E[1,1]B[1,1]+E[1,2]B[2,1]H[1,1] = E[1,1]*B[1,1] + E[1,2]*B[2,1]11\newlineH[1,1]=E[1,1]B[1,1]+E[1,2]B[2,1]H[1,1] = E[1,1]*B[1,1] + E[1,2]*B[2,1]22\newlineH[1,1]=E[1,1]B[1,1]+E[1,2]B[2,1]H[1,1] = E[1,1]*B[1,1] + E[1,2]*B[2,1]33\newlineH[1,1]=E[1,1]B[1,1]+E[1,2]B[2,1]H[1,1] = E[1,1]*B[1,1] + E[1,2]*B[2,1]44\newlineThe element in the second row and first column of matrix H (H[1,1]=E[1,1]B[1,1]+E[1,2]B[2,1]H[1,1] = E[1,1]*B[1,1] + E[1,2]*B[2,1]55) is calculated as:\newlineH[1,1]=E[1,1]B[1,1]+E[1,2]B[2,1]H[1,1] = E[1,1]*B[1,1] + E[1,2]*B[2,1]66\newlineH[1,1]=E[1,1]B[1,1]+E[1,2]B[2,1]H[1,1] = E[1,1]*B[1,1] + E[1,2]*B[2,1]77\newlineH[1,1]=E[1,1]B[1,1]+E[1,2]B[2,1]H[1,1] = E[1,1]*B[1,1] + E[1,2]*B[2,1]88\newlineH[1,1]=E[1,1]B[1,1]+E[1,2]B[2,1]H[1,1] = E[1,1]*B[1,1] + E[1,2]*B[2,1]99\newlineThe element in the second row and second column of matrix H (H[1,1]=(1)0+35H[1,1] = (-1)*0 + 3*500) is calculated as:\newlineH[1,1]=(1)0+35H[1,1] = (-1)*0 + 3*511\newlineH[1,1]=(1)0+35H[1,1] = (-1)*0 + 3*522\newlineH[1,1]=(1)0+35H[1,1] = (-1)*0 + 3*533\newlineH[1,1]=(1)0+35H[1,1] = (-1)*0 + 3*544\newlineThe element in the second row and third column of matrix H (H[1,1]=(1)0+35H[1,1] = (-1)*0 + 3*555) is calculated as:\newlineH[1,1]=(1)0+35H[1,1] = (-1)*0 + 3*566\newlineH[1,1]=(1)0+35H[1,1] = (-1)*0 + 3*577\newlineH[1,1]=(1)0+35H[1,1] = (-1)*0 + 3*588\newline$H[\(2\),\(3\)] = \(8\)
  3. Combine Elements to Form Matrix H: Combine the calculated elements to form matrix H. Matrix H, which is the product of matrix E and matrix B, is: \(H = \left[\begin{array}{ccc} 15 & 1 & 8 \ 20 & 8 & 8 \end{array}\right]\)

More problems from Multiply two decimals: where does the decimal point go?