Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(dy)/(dx)=-4y, and 
y=3 when 
x=2.
Solve the equation.
Choose 1 answer:
(A) 
y=3e^(8-4x)
(B) 
y=3e^(-4x)
(C) 
y=3e^(4-4x)
(D) 
y=6e^(-4x)

dydx=4y \frac{d y}{d x}=-4 y , and y=3 y=3 when x=2 x=2 .\newlineSolve the equation.\newlineChoose 11 answer:\newline(A) y=3e84x y=3 e^{8-4 x} \newline(B) y=3e4x y=3 e^{-4 x} \newline(C) y=3e44x y=3 e^{4-4 x} \newline(D) y=6e4x y=6 e^{-4 x}

Full solution

Q. dydx=4y \frac{d y}{d x}=-4 y , and y=3 y=3 when x=2 x=2 .\newlineSolve the equation.\newlineChoose 11 answer:\newline(A) y=3e84x y=3 e^{8-4 x} \newline(B) y=3e4x y=3 e^{-4 x} \newline(C) y=3e44x y=3 e^{4-4 x} \newline(D) y=6e4x y=6 e^{-4 x}
  1. Recognize type: Recognize the type of differential equation.\newlineThe given differential equation dydx=4y\frac{dy}{dx}=-4y is a first-order linear homogeneous differential equation.
  2. Solve equation: Solve the differential equation.\newlineTo solve this equation, we can use separation of variables. We rearrange the terms to separate the variables yy and xx:\newlinedyy=4dx\frac{dy}{y} = -4 dx\newlineNow, we integrate both sides:\newline(1y)dy=4dx\int(\frac{1}{y}) dy = \int-4 dx\newlineThe integral of 1y\frac{1}{y} dy is lny\ln|y|, and the integral of 4dx-4 dx is 4x-4x. So we have:\newlinelny=4x+C\ln|y| = -4x + C, where CC is the constant of integration.
  3. Find yy: Solve for yy.\newlineTo solve for yy, we exponentiate both sides to get rid of the natural logarithm:\newlineelny=e(4x+C)e^{\ln|y|} = e^{(-4x + C)}\newliney=e(4x)eCy = e^{(-4x)} \cdot e^{C}\newlineSince eCe^{C} is just a constant, we can rename it as CC':\newliney=Ce(4x)y = C'e^{(-4x)}
  4. Use initial condition: Use the initial condition to find the constant CC'. We are given that y=3y=3 when x=2x=2. We substitute these values into the equation to find CC': 3=Ce(42)3 = C'e^{(-4*2)} 3=Ce(8)3 = C'e^{(-8)} Now, we solve for CC': C=3e(8)C' = \frac{3}{e^{(-8)}} C=3e8C' = 3e^{8}
  5. Find constant: Write the final solution.\newlineNow that we have the value of CC', we can write the final solution:\newliney=3e8e4xy = 3e^{8}e^{-4x}\newlineWe can combine the exponents since they have the same base:\newliney=3e84xy = 3e^{8-4x}\newlineThis matches answer choice (A)(A).

More problems from Transformations of quadratic functions