Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(dy)/(dx)=(15)/(x^(4))*(4y^((3)/(4)))/(3)

dydx=15x44y343 \frac{d y}{d x}=\frac{15}{x^{4}} \cdot \frac{4 y^{\frac{3}{4}}}{3}

Full solution

Q. dydx=15x44y343 \frac{d y}{d x}=\frac{15}{x^{4}} \cdot \frac{4 y^{\frac{3}{4}}}{3}
  1. Simplify constants and variables: We are given the differential equation:\newlinedydx=15x44y343\frac{dy}{dx} = \frac{15}{x^{4}} \cdot \frac{4y^{\frac{3}{4}}}{3}\newlineFirst, we need to simplify the right-hand side of the equation by multiplying the constants together and keeping the variables separate.
  2. Combine constants and variables: The constants are 1515 and 43\frac{4}{3}. Multiplying these together gives:\newline15×(43)=603=2015 \times \left(\frac{4}{3}\right) = \frac{60}{3} = 20\newlineNow we have:\newlinedydx=20×(1x4)×y(34)\frac{dy}{dx} = 20 \times \left(\frac{1}{x^{4}}\right) \times y^{\left(\frac{3}{4}\right)}
  3. Final simplified form: Next, we simplify the expression by combining the terms with the variables xx and yy:dydx=20x4y(34)\frac{dy}{dx} = 20 \cdot x^{-4} \cdot y^{\left(\frac{3}{4}\right)}This is the simplified form of the given differential equation.

More problems from Multiplication with rational exponents