Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(dy)/(dt)=2t+3" and "y(1)=6
What is 
t when 
y=0 ?
Choose all answers that apply:
A 
t=-3
B 
t=-1
c 
t=1
D 
t=0
ㅌ 
t=-2
F 
t=-4

dydt=2t+3 and y(1)=6. \frac{d y}{d t}=2 t+3 \text { and } y(1)=6. \newlineWhat is t t when y=0 y=0 ?\newlineChoose all answers that apply:\newline(A) t=3 t=-3 \newline(B) t=1 t=-1 \newline(C) t=1 t=1 \newline(D) t=0 t=0 \newline(E) t=2 t=-2 \newline(F) t=4 t=-4

Full solution

Q. dydt=2t+3 and y(1)=6. \frac{d y}{d t}=2 t+3 \text { and } y(1)=6. \newlineWhat is t t when y=0 y=0 ?\newlineChoose all answers that apply:\newline(A) t=3 t=-3 \newline(B) t=1 t=-1 \newline(C) t=1 t=1 \newline(D) t=0 t=0 \newline(E) t=2 t=-2 \newline(F) t=4 t=-4
  1. Integrate and Find Solution: Given the differential equation dydt=2t+3\frac{dy}{dt} = 2t + 3 and the initial condition y(1)=6y(1) = 6, we need to integrate the differential equation to find the general solution for y(t)y(t).
  2. Use Initial Condition: Integrate dydt=2t+3\frac{dy}{dt} = 2t + 3 with respect to tt to find y(t)y(t).(dy)=(2t+3)dt\int(dy) = \int(2t + 3) dty(t)=t2+3t+Cy(t) = t^2 + 3t + C, where CC is the constant of integration.
  3. Substitute Constant and Solve: Use the initial condition y(1)=6y(1) = 6 to find the value of the constant CC.
    6=(1)2+3(1)+C6 = (1)^2 + 3(1) + C
    6=1+3+C6 = 1 + 3 + C
    C=64C = 6 - 4
    C=2C = 2
  4. Find tt when y=0y = 0: Substitute the value of CC back into the general solution to get the particular solution for y(t)y(t).\newliney(t)=t2+3t+2y(t) = t^2 + 3t + 2
  5. Factor and Solve Quadratic Equation: Now we need to find the value of tt when y=0y = 0.\newline0=t2+3t+20 = t^2 + 3t + 2\newlineWe have a quadratic equation to solve: t2+3t+2=0t^2 + 3t + 2 = 0.
  6. Identify Values of tt: Factor the quadratic equation.(t+1)(t+2)=0(t + 1)(t + 2) = 0
  7. Identify Values of tt: Factor the quadratic equation.(t+1)(t+2)=0(t + 1)(t + 2) = 0Set each factor equal to zero and solve for tt.t+1=0t=1t + 1 = 0 \Rightarrow t = -1t+2=0t=2t + 2 = 0 \Rightarrow t = -2
  8. Identify Values of t: Factor the quadratic equation.\newline(t+1)(t+2)=0(t + 1)(t + 2) = 0 Set each factor equal to zero and solve for t.\newlinet+1=0t=1t + 1 = 0 \Rightarrow t = -1\newlinet+2=0t=2t + 2 = 0 \Rightarrow t = -2 We have found two values of t when y=0y = 0: t=1t = -1 and t=2t = -2. These correspond to options B and E.

More problems from Solve complex trigonomentric equations