Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(d)/(dx)((x^(2)-x+5)/(4x-1))=

ddx(x2x+54x1)= \frac{d}{d x}\left(\frac{x^{2}-x+5}{4 x-1}\right)=

Full solution

Q. ddx(x2x+54x1)= \frac{d}{d x}\left(\frac{x^{2}-x+5}{4 x-1}\right)=
  1. Apply Quotient Rule: To find the derivative of the function (x2x+5)/(4x1)(x^2 - x + 5) / (4x - 1), we will use the quotient rule. The quotient rule states that if we have a function h(x)=f(x)/g(x)h(x) = f(x) / g(x), then its derivative h(x)h'(x) is given by h(x)=(f(x)g(x)f(x)g(x))/(g(x))2h'(x) = (f'(x)g(x) - f(x)g'(x)) / (g(x))^2. Here, f(x)=x2x+5f(x) = x^2 - x + 5 and g(x)=4x1g(x) = 4x - 1.
  2. Find f(x)f'(x): First, we find the derivative of f(x)=x2x+5f(x) = x^2 - x + 5. The derivative of x2x^2 is 2x2x, the derivative of x-x is 1-1, and the derivative of a constant like 55 is 00. So, f(x)=2x1f'(x) = 2x - 1.
  3. Find g(x)g'(x): Next, we find the derivative of g(x)=4x1g(x) = 4x - 1. The derivative of 4x4x is 44, and the derivative of a constant like 1-1 is 00. So, g(x)=4g'(x) = 4.
  4. Expand Numerator: Now we apply the quotient rule. We have f(x)=2x1f'(x) = 2x - 1 and g(x)=4g'(x) = 4, so we plug these into the quotient rule formula:\newlineh(x)=(2x1)(4x1)(x2x+5)(4)(4x1)2h'(x) = \frac{(2x - 1)(4x - 1) - (x^2 - x + 5)(4)}{(4x - 1)^2}.
  5. Subtract Terms: We expand the numerator:\newline(2x1)(4x1)=8x22x4x+1=8x26x+1(2x - 1)(4x - 1) = 8x^2 - 2x - 4x + 1 = 8x^2 - 6x + 1,\newline(x2x+5)(4)=4x24x+20(x^2 - x + 5)(4) = 4x^2 - 4x + 20.\newlineSo, the numerator becomes (8x26x+1)(4x24x+20)(8x^2 - 6x + 1) - (4x^2 - 4x + 20).
  6. Simplify Result: Subtract the terms in the numerator: \newlineegin{equation}\newline(88x^22 - 66x + 11) - (44x^22 - 44x + 2020) = 88x^22 - 66x + 11 - 44x^22 + 44x - 2020 = 44x^22 - 22x - 1919.\newlineegin{equation}
  7. Simplify Result: Subtract the terms in the numerator:\newline(8x26x+1)(4x24x+20)=8x26x+14x2+4x20=4x22x19(8x^2 - 6x + 1) - (4x^2 - 4x + 20) = 8x^2 - 6x + 1 - 4x^2 + 4x - 20 = 4x^2 - 2x - 19.Now we have the simplified numerator and the denominator squared:\newlineh(x)=4x22x19(4x1)2h'(x) = \frac{4x^2 - 2x - 19}{(4x - 1)^2}.\newlineThis is the derivative of the function x2x+54x1\frac{x^2 - x + 5}{4x - 1} in simplified form.

More problems from Csc, sec, and cot of special angles