Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find (d)/(dx)((2x)/(sqrt(x^(2)+3)))

Find ddx(2xx2+3)\frac{d}{dx}\left(\frac{2x}{\sqrt{x^{2}+3}}\right)

Full solution

Q. Find ddx(2xx2+3)\frac{d}{dx}\left(\frac{2x}{\sqrt{x^{2}+3}}\right)
  1. Apply Quotient Rule: Use the quotient rule for differentiation, which is (v(u)u(v))/(v2)(v(u') - u(v')) / (v^2), where u=2xu = 2x and v=x2+3v = \sqrt{x^2 + 3}.
  2. Differentiate uu: Differentiate u=2xu = 2x with respect to xx to get u=2u' = 2.
  3. Differentiate vv: Differentiate v=x2+3v = \sqrt{x^2 + 3} with respect to xx. First, rewrite vv as (x2+3)12(x^2 + 3)^{\frac{1}{2}} to make it easier.
  4. Use Chain Rule: Now, use the chain rule to differentiate vv. The derivative of the outer function with respect to the inner function (x2+3)(x^2 + 3) is (12)(x2+3)12(\frac{1}{2})(x^2 + 3)^{-\frac{1}{2}}. Then multiply by the derivative of the inner function, which is 2x2x. So, v=(12)(x2+3)122xv' = (\frac{1}{2})(x^2 + 3)^{-\frac{1}{2}} \cdot 2x.
  5. Apply Quotient Rule: Now apply the quotient rule: (v(u)u(v))/(v2)(v(u') - u(v')) / (v^2). Plug in uu, uu', vv, and vv' to get [(x2+3)(2)(2x)(12(x2+3)122x)]/(x2+3)2\left[(\sqrt{x^2 + 3})(2) - (2x)\left(\frac{1}{2}(x^2 + 3)^{-\frac{1}{2}} \cdot 2x\right)\right] / (\sqrt{x^2 + 3})^2.
  6. Simplify Numerator: Simplify the numerator: [2x2+3(2x)(xx2+3)][2\sqrt{x^2 + 3} - (2x)\left(\frac{x}{\sqrt{x^2 + 3}}\right)].
  7. Simplify Denominator: Simplify the denominator: (x2+3)2(\sqrt{x^2 + 3})^2 is just x2+3x^2 + 3.
  8. Combine Terms: Now, combine the terms in the numerator: 2x2+32x2x2+32\sqrt{x^2 + 3} - \frac{2x^2}{\sqrt{x^2 + 3}}.
  9. Write Final Derivative: Write the final simplified derivative: 2x2+32x2x2+3x2+3\frac{2\sqrt{x^2 + 3} - \frac{2x^2}{\sqrt{x^2 + 3}}}{x^2 + 3}.

More problems from Multiplication with rational exponents