Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


(d)/(dx)((2x+3)/((x-4)^(2)))=

ddx(2x+3(x4)2)=\frac{d}{dx}\left(\frac{2x+3}{(x-4)^{2}}\right)=

Full solution

Q. ddx(2x+3(x4)2)=\frac{d}{dx}\left(\frac{2x+3}{(x-4)^{2}}\right)=
  1. Apply Quotient Rule: To find the derivative of the function (2x+3)/((x4)2)(2x+3)/((x-4)^{2}), we use the quotient rule which states that if f(x)=g(x)/h(x)f(x) = g(x)/h(x), then f(x)=(g(x)h(x)g(x)h(x))/(h(x))2f'(x) = (g'(x)h(x) - g(x)h'(x))/(h(x))^{2}. Here, g(x)=2x+3g(x) = 2x + 3 and h(x)=(x4)2h(x) = (x - 4)^{2}.
  2. Find Derivative of g(x)g(x): First, find the derivative of g(x)=2x+3g(x) = 2x + 3. Using the power rule, g(x)=2g'(x) = 2.
  3. Find Derivative of h(x)h(x): Next, find the derivative of h(x)=(x4)2h(x) = (x - 4)^2. Using the power rule and chain rule, h(x)=2(x4)1=2(x4)h'(x) = 2(x - 4) \cdot 1 = 2(x - 4).
  4. Simplify Numerator: Apply the quotient rule: f(x)=2(x4)2(2x+3)2(x4)(x4)4f'(x) = \frac{2 \cdot (x - 4)^2 - (2x + 3) \cdot 2(x - 4)}{(x - 4)^4}.
  5. Expand and Simplify: Simplify the numerator:\newlinef(x)=2(x4)2(4x+6)(x4)(x4)4f'(x) = \frac{2(x - 4)^2 - (4x + 6)(x - 4)}{(x - 4)^4}.
  6. Combine Like Terms: Expand and simplify the terms in the numerator:\newlinef(x)=(2x216x+32(4x216x6x+24))((x4)4).f'(x) = \frac{(2x^2 - 16x + 32 - (4x^2 - 16x - 6x + 24))}{((x - 4)^4)}.
  7. Combine Like Terms: Expand and simplify the terms in the numerator:\newlinef(x)=2x216x+32(4x216x6x+24)(x4)4f'(x) = \frac{2x^2 - 16x + 32 - (4x^2 - 16x - 6x + 24)}{(x - 4)^4}.Combine like terms:\newlinef(x)=2x216x+324x2+16x+6x24(x4)4f'(x) = \frac{2x^2 - 16x + 32 - 4x^2 + 16x + 6x - 24}{(x - 4)^4}.\newlinef(x)=2x2+6x+8(x4)4f'(x) = \frac{-2x^2 + 6x + 8}{(x - 4)^4}.

More problems from Csc, sec, and cot of special angles