Apply Quotient Rule: To find the derivative of the function (2x+3)/((x−4)2), we use the quotient rule which states that if f(x)=g(x)/h(x), then f′(x)=(g′(x)h(x)−g(x)h′(x))/(h(x))2. Here, g(x)=2x+3 and h(x)=(x−4)2.
Find Derivative of g(x): First, find the derivative of g(x)=2x+3. Using the power rule, g′(x)=2.
Find Derivative of h(x): Next, find the derivative of h(x)=(x−4)2. Using the power rule and chain rule, h′(x)=2(x−4)⋅1=2(x−4).
Simplify Numerator: Apply the quotient rule: f′(x)=(x−4)42⋅(x−4)2−(2x+3)⋅2(x−4).
Expand and Simplify: Simplify the numerator:f′(x)=(x−4)42(x−4)2−(4x+6)(x−4).
Combine Like Terms: Expand and simplify the terms in the numerator:f′(x)=((x−4)4)(2x2−16x+32−(4x2−16x−6x+24)).
Combine Like Terms: Expand and simplify the terms in the numerator:f′(x)=(x−4)42x2−16x+32−(4x2−16x−6x+24).Combine like terms:f′(x)=(x−4)42x2−16x+32−4x2+16x+6x−24.f′(x)=(x−4)4−2x2+6x+8.
More problems from Csc, sec, and cot of special angles