Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


int3cosec^(5)x cot xdx

3cosec5xcotxdx \int 3 \operatorname{cosec}^{5} x \cot x d x

Full solution

Q. 3cosec5xcotxdx \int 3 \operatorname{cosec}^{5} x \cot x d x
  1. Recognize Trigonometric Functions: Given the integral to solve is 3csc5(x)cot(x)dx\int 3 \csc^5(x) \cot(x) \, dx. We can start by recognizing that csc(x)\csc(x) is 1sin(x)\frac{1}{\sin(x)} and cot(x)\cot(x) is cos(x)sin(x)\frac{\cos(x)}{\sin(x)}. So, we rewrite the integral in terms of sine and cosine: 3csc5(x)cot(x)dx=3(1sin5(x))(cos(x)sin(x))dx=3cos(x)sin6(x)dx\int 3 \csc^5(x) \cot(x) \, dx = \int 3\left(\frac{1}{\sin^5(x)}\right) \cdot \left(\frac{\cos(x)}{\sin(x)}\right) \, dx = \int \frac{3\cos(x)}{\sin^6(x)} \, dx Now, let's use a substitution method where we let u=sin(x)u = \sin(x), which means du=cos(x)dxdu = \cos(x) \, dx.
  2. Perform Substitution: Perform the substitution:\newlineu=sin(x)du=cos(x)dxu = \sin(x) \Rightarrow du = \cos(x) dx\newlineThe integral becomes:\newline3cos(x)/sin6(x)dx=3/u6du\int 3\cos(x)/\sin^6(x) dx = \int 3/u^6 du
  3. Integrate with Respect to u: Now we integrate 3u6\frac{3}{u^6} with respect to uu: \newline3u6du=3u6du\int \frac{3}{u^6} du = 3\int u^{-6} du\newlineThe antiderivative of u6u^{-6} is u55\frac{u^{-5}}{-5}.\newlineSo, we have 3u55+C\frac{3 \cdot u^{-5}}{-5} + C, where CC is the constant of integration.
  4. Substitute Back for u: Substitute back for u to get the answer in terms of x:\newline3u5/(5)+C=3sin5(x)/(5)+C3 \cdot u^{-5}/(-5) + C = 3 \cdot \sin^{-5}(x)/(-5) + C\newlineSimplify the expression:\newline=35sin5(x)+C= -\frac{3}{5} \cdot \sin^{-5}(x) + C\newline=35csc5(x)+C= -\frac{3}{5} \cdot \csc^5(x) + C\newlineThis is our final answer.

More problems from Solve complex trigonomentric equations