Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{[b(1)=-500],[b(n)=b(n-1)*(4)/(5)]:}
What is the 
3^("rd ") term in the sequence?

◻

{b(1)=500b(n)=b(n1)45 \left\{\begin{array}{l} b(1)=-500 \\ b(n)=b(n-1) \cdot \frac{4}{5} \end{array}\right. \newlineWhat is the 3rd  3^{\text {rd }} term in the sequence?\newline \square

Full solution

Q. {b(1)=500b(n)=b(n1)45 \left\{\begin{array}{l} b(1)=-500 \\ b(n)=b(n-1) \cdot \frac{4}{5} \end{array}\right. \newlineWhat is the 3rd  3^{\text {rd }} term in the sequence?\newline \square
  1. Identify first term and formula: Identify the first term of the sequence and the recursive formula.\newlineThe first term b(1)b(1) is given as 500-500. The recursive formula to find the nth term is b(n)=b(n1)×(45)b(n) = b(n-1) \times \left(\frac{4}{5}\right), which means each term is 45\frac{4}{5} times the previous term.
  2. Find second term: Find the second term using the recursive formula.\newlineTo find the second term b(2)b(2), we use the first term b(1)b(1) and multiply it by 45\frac{4}{5}.\newlineb(2)=b(1)×(45)=500×(45)b(2) = b(1) \times \left(\frac{4}{5}\right) = -500 \times \left(\frac{4}{5}\right)
  3. Calculate second term: Calculate the value of the second term. b(2)=500×(45)=400b(2) = -500 \times \left(\frac{4}{5}\right) = -400 The second term in the sequence is 400-400.
  4. Find third term: Find the third term using the recursive formula.\newlineTo find the third term b(3)b(3), we use the second term b(2)b(2) and multiply it by 45\frac{4}{5}.\newlineb(3)=b(2)×(45)=400×(45)b(3) = b(2) \times \left(\frac{4}{5}\right) = -400 \times \left(\frac{4}{5}\right)
  5. Calculate third term: Calculate the value of the third term.\newlineb(3)=400×(45)=320b(3) = -400 \times \left(\frac{4}{5}\right) = -320\newlineThe third term in the sequence is 320-320.

More problems from Find higher derivatives of rational and radical functions