Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(a+sqrt(7a))*(2a+sqrt(4a))

(a+7a)(2a+4a) (a+\sqrt{7 a}) \cdot(2 a+\sqrt{4 a})

Full solution

Q. (a+7a)(2a+4a) (a+\sqrt{7 a}) \cdot(2 a+\sqrt{4 a})
  1. Apply Distributive Property: To multiply the two expressions, we will use the distributive property (also known as the FOIL method for binomials), which states that for any numbers xx, yy, zz, and ww, (x+y)(z+w)=xz+xw+yz+yw(x + y)(z + w) = xz + xw + yz + yw.
  2. Multiply First Terms: First, we multiply the first terms of each binomial: a×2a=2a2a \times 2a = 2a^2.
  3. Multiply Outer Terms: Next, we multiply the outer terms: a×4a=a×2a=2a32a \times \sqrt{4a} = a \times 2\sqrt{a} = 2a^{\frac{3}{2}}.
  4. Multiply Inner Terms: Then, we multiply the inner terms: 7a×2a=2a32×7=27×a32\sqrt{7a} \times 2a = 2a^{\frac{3}{2}} \times \sqrt{7} = 2\sqrt{7} \times a^{\frac{3}{2}}.
  5. Multiply Last Terms: Finally, we multiply the last terms of each binomial: 7a×4a=28a2=4×7×a2=2a×7\sqrt{7a} \times \sqrt{4a} = \sqrt{28a^2} = \sqrt{4\times7\times a^2} = 2a \times \sqrt{7} because 4=2\sqrt{4} = 2 and a2=a\sqrt{a^2} = a.
  6. Add All Products: Now, we add all the products together: 2a2+2a32+27a32+2a72a^2 + 2a^{\frac{3}{2}} + 2\sqrt{7} \cdot a^{\frac{3}{2}} + 2a \cdot \sqrt{7}.
  7. Combine Like Terms: We can combine like terms: 2a2+(2+27)a322a^2 + (2 + 2\sqrt{7}) \cdot a^{\frac{3}{2}}.

More problems from Solve radical equations