Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(a+b)/(c-d)-(a+b)/(d-c)
Which of the following is equivalent to the given expression for 
c!=d ?
Choose 1 answer:
(A) 0
(B) 
(2b)/(c-d)
(c) 
(2(a+b))/(c-d)
(D) 
(2a+2b)/(2c-2d)

a+bcda+bdc \frac{a+b}{c-d}-\frac{a+b}{d-c} \newlineWhich of the following is equivalent to the given expression for cd c \neq d ?\newlineChoose 11 answer:\newline(A) 00\newline(B) 2bcd \frac{2 b}{c-d} \newline(C) 2(a+b)cd \frac{2(a+b)}{c-d} \newline(D) 2a+2b2c2d \frac{2 a+2 b}{2 c-2 d}

Full solution

Q. a+bcda+bdc \frac{a+b}{c-d}-\frac{a+b}{d-c} \newlineWhich of the following is equivalent to the given expression for cd c \neq d ?\newlineChoose 11 answer:\newline(A) 00\newline(B) 2bcd \frac{2 b}{c-d} \newline(C) 2(a+b)cd \frac{2(a+b)}{c-d} \newline(D) 2a+2b2c2d \frac{2 a+2 b}{2 c-2 d}
  1. Recognize Rule: First, we need to recognize that (dc)(d-c) is the same as (cd)- (c-d). This means that we can rewrite the second fraction as: a+bdc=a+b(cd)=a+bcd\frac{a+b}{d-c} = \frac{a+b}{-(c-d)} = -\frac{a+b}{c-d}
  2. Combine Fractions: Now, we can combine the two fractions since they have the same denominator: (a+b)/(cd)(a+b)/(cd)=(a+b)/(cd)((a+b)/(cd))(a+b)/(c-d) - (a+b)/(c-d) = (a+b)/(c-d) - (-(a+b)/(c-d))
  3. Simplify Numerators: Simplify the expression by combining the numerators: a+ba+b - \-\(a+b\) = a+ba+b + a+ba+b = 2(a+b){2}(a+b)
  4. Combine Numerator and Denominator: Now, place the combined numerator over the common denominator: 2(a+b)cd\frac{2(a+b)}{c-d}
  5. Check Answer: We can check our answer against the options provided. The expression we have found, 2(a+b)cd\frac{2(a+b)}{c-d}, matches option (C).

More problems from Identify equivalent linear expressions