Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(-9x^(2)+3x+9)-(-2x^(2)+3x-2)=ax^(2)+bx+c
where 
a,b, and 
c are constants. What is the value of 
b ?
Choose 1 answer:
(A) -7
(B) 6
(C) 0
(D) 11

(9x2+3x+9)(2x2+3x2)=ax2+bx+c \left(-9 x^{2}+3 x+9\right)-\left(-2 x^{2}+3 x-2\right)=a x^{2}+b x+c \newlinewhere a,b a, b , and c c are constants. What is the value of b b ?\newlineChoose 11 answer:\newline(A) 7-7\newline(B) 66\newline(C) 00\newline(D) 1111

Full solution

Q. (9x2+3x+9)(2x2+3x2)=ax2+bx+c \left(-9 x^{2}+3 x+9\right)-\left(-2 x^{2}+3 x-2\right)=a x^{2}+b x+c \newlinewhere a,b a, b , and c c are constants. What is the value of b b ?\newlineChoose 11 answer:\newline(A) 7-7\newline(B) 66\newline(C) 00\newline(D) 1111
  1. Distribute negative sign: First, we need to distribute the negative sign to the terms inside the second set of parentheses.\newline(9x2+3x+9)(2x2+3x2)(-9x^{2} + 3x + 9) - (-2x^{2} + 3x - 2)\newline= (9x2+3x+9)+(2x23x+2)(-9x^{2} + 3x + 9) + (2x^{2} - 3x + 2)
  2. Combine like terms: Next, we combine like terms by adding the coefficients of the x2x^2 terms, the xx terms, and the constant terms separately.\newline(9x2+2x2)+(3x3x)+(9+2)(-9x^{2} + 2x^{2}) + (3x - 3x) + (9 + 2)\newline=7x2+0x+11= -7x^{2} + 0x + 11
  3. Identify coefficients: Now we can identify the coefficients aa, bb, and cc in the expression ax2+bx+cax^{2} + bx + c.$a=7\$a = -7, b=0b = 0, c=11c = 11\)
  4. Find value of bb: We are asked to find the value of bb. From our previous step, we have determined that b=0b = 0.

More problems from Transformations of quadratic functions