Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[8x-y=12],[2x-6y=3]:}
Consider the system of equations. If 
(x,y) is the solution to the system, then what is the value of 
x+y ?

8xy=122x6y=3 \begin{array}{l} 8 x-y=12 \\ 2 x-6 y=3 \end{array} \newlineConsider the system of equations. If (x,y) (x, y) is the solution to the system, then what is the value of x+y x+y ?

Full solution

Q. 8xy=122x6y=3 \begin{array}{l} 8 x-y=12 \\ 2 x-6 y=3 \end{array} \newlineConsider the system of equations. If (x,y) (x, y) is the solution to the system, then what is the value of x+y x+y ?
  1. Write Equations: Write down the system of equations.\newlineWe have the following system of equations:\newline{:\begin{align*}8x-y&=12\2x-6y&=3\end{align*}:}
  2. Multiply Second Equation: Multiply the second equation by 33 to make the coefficients of yy the same.\newlineMultiplying the second equation by 33, we get:\newline\begin{align*} 8x-y&=12,\ 6x-18y&=9 \end{align*}
  3. Eliminate y: Subtract the second equation from the first equation to eliminate y.\newlineSubtracting the second equation from the first, we get:\newline(8xy)(6x18y)=129(8x - y) - (6x - 18y) = 12 - 9\newlineThis simplifies to:\newline8xy6x+18y=38x - y - 6x + 18y = 3\newlineCombining like terms, we get:\newline2x+17y=32x + 17y = 3
  4. Solve for y: Solve for y using the modified second equation.\newlineWe can solve for y by rearranging the modified second equation:\newline2x+17y=32x + 17y = 3\newline17y=32x17y = 3 - 2x\newliney=32x17y = \frac{3 - 2x}{17}
  5. Substitute for y: Substitute the expression for yy back into the first original equation to solve for xx.\newlineSubstituting y=32x17y = \frac{3 - 2x}{17} into the first original equation 8xy=128x - y = 12, we get:\newline8x32x17=128x - \frac{3 - 2x}{17} = 12\newlineMultiplying through by 1717 to clear the fraction, we get:\newline136x(32x)=204136x - (3 - 2x) = 204
  6. Correct Multiplication: Step 55 (Correction): Correct the multiplication to clear the fraction.\newlineMultiplying through by 1717 to clear the fraction, we get:\newline17×8x17×(32x)17=17×1217 \times 8x - 17 \times \frac{(3 - 2x)}{17} = 17 \times 12\newlineThis simplifies to:\newline136x(32x)=204136x - (3 - 2x) = 204\newlineNow distribute the negative sign inside the parentheses:\newline136x3+2x=204136x - 3 + 2x = 204\newlineCombine like terms:\newline138x3=204138x - 3 = 204\newlineAdd 33 to both sides:\newline138x=207138x = 207\newlineDivide both sides by 138138:\newlinex=207138x = \frac{207}{138}\newlineSimplify the fraction:\newlinex=1.5x = 1.5
  7. Substitute for x: Substitute the value of xx back into the expression for yy. Now that we have x=1.5x = 1.5, we can substitute it back into the expression for yy: y=32x17y = \frac{3 - 2x}{17} y=32(1.5)17y = \frac{3 - 2(1.5)}{17} y=3317y = \frac{3 - 3}{17} y=017y = \frac{0}{17} y=0y = 0
  8. Find x+yx + y: Add the values of xx and yy to find x+yx + y.\newlinex+y=1.5+0x + y = 1.5 + 0\newlinex+y=1.5x + y = 1.5

More problems from Domain and range