Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(8^((1)/(2)))/(2^((1)/(3)))
Which of the following is equivalent to the given expression?
Choose 1 answer:
(A) 
2^((7)/(6))
(B) 
2^((9)/(2))
(C) 
4^((1)/(6))
(D) 
4^((3)/(2))

812213 \frac{8^{\frac{1}{2}}}{2^{\frac{1}{3}}} \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 276 2^{\frac{7}{6}} \newline(B) 292 2^{\frac{9}{2}} \newline(C) 416 4^{\frac{1}{6}} \newline(D) 432 4^{\frac{3}{2}}

Full solution

Q. 812213 \frac{8^{\frac{1}{2}}}{2^{\frac{1}{3}}} \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 276 2^{\frac{7}{6}} \newline(B) 292 2^{\frac{9}{2}} \newline(C) 416 4^{\frac{1}{6}} \newline(D) 432 4^{\frac{3}{2}}
  1. Simplify using property of exponents: Simplify the expression using the property of exponents that states amn=(an)ma^{\frac{m}{n}} = (\sqrt[n]{a})^m.\newline(812)(8^{\frac{1}{2}}) can be simplified because 88 is 232^3, so we rewrite the expression as ((23)12)/(213)((2^3)^{\frac{1}{2}})/(2^{\frac{1}{3}}).
  2. Apply power of a power rule: Apply the power of a power rule, which states (am)n=amn(a^m)^n = a^{m*n}.\newlineSo, ((23)1/2)((2^3)^{1/2}) becomes 23(1/2)=23/22^{3*(1/2)} = 2^{3/2}.
  3. Combine exponents using division property: Now we have the expression 232/2132^{\frac{3}{2}} / 2^{\frac{1}{3}}. We can combine the exponents by subtracting the exponent in the denominator from the exponent in the numerator because of the division property of exponents, which states am/an=amna^m / a^n = a^{m-n}.\newlineSo, 232132^{\frac{3}{2} - \frac{1}{3}} is our next step.
  4. Find common denominator: Find a common denominator to subtract the fractions in the exponents.\newlineThe common denominator of 22 and 33 is 66, so we convert the fractions: (32)=(96)(\frac{3}{2}) = (\frac{9}{6}) and (13)=(26)(\frac{1}{3}) = (\frac{2}{6}).\newlineNow we subtract the exponents: 2(9626)2^{(\frac{9}{6} - \frac{2}{6})}.
  5. Perform subtraction of exponents: Perform the subtraction of the exponents. 29626=2762^{\frac{9}{6} - \frac{2}{6}} = 2^{\frac{7}{6}}.
  6. Match result to answer choices: Match the result to the given answer choices.\newline2762^{\frac{7}{6}} corresponds to choice (A) 2762^{\frac{7}{6}}.

More problems from Identify equivalent linear expressions I