Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[-7x+3y > -1],[5x-9y > -6]:}
Is 
(-1,0) a solution of the system?
Choose 1 answer:
(A) Yes
(B) No

7x+3ygt;15x9ygt;6 \begin{array}{l} -7 x+3 y>-1 \\ 5 x-9 y>-6 \end{array} \newlineIs (1,0) (-1,0) a solution of the system?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No

Full solution

Q. 7x+3y>15x9y>6 \begin{array}{l} -7 x+3 y>-1 \\ 5 x-9 y>-6 \end{array} \newlineIs (1,0) (-1,0) a solution of the system?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No
  1. Step 11: Check inequality for (1,0)(-1, 0): Does the point (1,0)(-1, 0) satisfy the inequality -7x + 3y > -1?\newlineSubstitute x=1x = -1 and y=0y = 0 in the inequality -7x + 3y > -1.\newline-7(-1) + 3(0) > -1\newline7 + 0 > -1\newline7 > -1\newlineThe point (1,0)(-1, 0) satisfies -7x + 3y > -1: Yes
  2. Step 22: Substitute values in -7x + 3y > -1: Does the point (1,0)(-1, 0) satisfy the inequality 5x - 9y > -6?\newlineSubstitute x=1x = -1 and y=0y = 0 in the inequality 5x - 9y > -6.\newline5(-1) - 9(0) > -6\newline-5 - 0 > -6\newline-5 > -6\newlineThe point (1,0)(-1, 0) satisfies 5x - 9y > -6: Yes
  3. Step 33: Simplify the inequality: Is (1,0)(-1, 0) a solution to the system of inequalities?\newlineSince (1,0)(-1, 0) satisfies both -7x + 3y > -1 and 5x - 9y > -6, the point (1,0)(-1, 0) is indeed a solution to the system of inequalities.

More problems from Is (x, y) a solution to the system of inequalities?