Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:


find the vertical asymptotes of the function
y=sqrt((1-sin x)/(1+sin x))

Find the vertical asymptotes of the functiony=1sinx1+sinxy=\sqrt{\frac{1-\sin x}{1+\sin x}}

Full solution

Q. Find the vertical asymptotes of the functiony=1sinx1+sinxy=\sqrt{\frac{1-\sin x}{1+\sin x}}
  1. Simplify using trigonometric identity: Simplify the expression inside the square root using the trigonometric identity for tangent half-angle.\newlineCalculation: \newlineUsing the identity, (1sinx)/(1+sinx)=(tan(x/2))2(1 - \sin x) / (1 + \sin x) = (\tan(x/2))^2.
  2. Substitute simplified expression: Substitute the simplified expression back into the original equation.\newlineCalculation:\newliney=(tan(x2))2y = \sqrt{(\tan(\frac{x}{2}))^2}.
  3. Simplify square root: Simplify the square root of a square.\newlineCalculation:\newliney=tan(x2)y = |\tan(\frac{x}{2})|.

More problems from Solve radical equations