Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(-5x^(2)+x+3)-(4x^(2)-7x+1)=ax^(2)+bx+c
where 
a,b, and 
c are constants. What is the value of 
b ?
Choose 1 answer:
(A) -9
(B) -6
(C) 7
(D) 8

(5x2+x+3)(4x27x+1)=ax2+bx+c \left(-5 x^{2}+x+3\right)-\left(4 x^{2}-7 x+1\right)=a x^{2}+b x+c \newlinewhere a,b a, b , and c c are constants. What is the value of b b ?\newlineChoose 11 answer:\newline(A) 9-9\newline(B) 6-6\newline(C) 77\newline(D) 88

Full solution

Q. (5x2+x+3)(4x27x+1)=ax2+bx+c \left(-5 x^{2}+x+3\right)-\left(4 x^{2}-7 x+1\right)=a x^{2}+b x+c \newlinewhere a,b a, b , and c c are constants. What is the value of b b ?\newlineChoose 11 answer:\newline(A) 9-9\newline(B) 6-6\newline(C) 77\newline(D) 88
  1. Subtract and Combine Like Terms: Subtract the second polynomial from the first one by combining like terms.\newline(5x2+x+3)(4x27x+1)=ax2+bx+c(-5x^2 + x + 3) - (4x^2 - 7x + 1) = ax^2 + bx + c\newlineFirst, combine the x2x^2 terms: 5x24x2=9x2-5x^2 - 4x^2 = -9x^2\newlineThen, combine the xx terms: x(7x)=x+7x=8xx - (-7x) = x + 7x = 8x\newlineFinally, combine the constant terms: 31=23 - 1 = 2\newlineSo, the expression becomes 9x2+8x+2=ax2+bx+c-9x^2 + 8x + 2 = ax^2 + bx + c
  2. Identify Coefficients: Identify the coefficients of x2x^2, xx, and the constant term to find aa, bb, and cc. From the expression 9x2+8x+2-9x^2 + 8x + 2, we can see that: a=9a = -9, b=8b = 8, and c=2c = 2

More problems from Transformations of quadratic functions