Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

-5(x^(2)+2y^(2)-5z)
Which of the following is equivalent to the given expression?
Choose 1 answer:
(A) 
-5x^(2)-10y^(2)+z
(B) 
-5x^(2)-10y^(2)+25 z
(C) 
-5x^(2)+10y^(2)-25 z
(D) 
-5x^(2)+2y^(2)-5z

5(x2+2y25z) -5\left(x^{2}+2 y^{2}-5 z\right) \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 5x210y2+z -5 x^{2}-10 y^{2}+z \newline(B) 5x210y2+25z -5 x^{2}-10 y^{2}+25 z \newline(C) 5x2+10y225z -5 x^{2}+10 y^{2}-25 z \newline(D) 5x2+2y25z -5 x^{2}+2 y^{2}-5 z

Full solution

Q. 5(x2+2y25z) -5\left(x^{2}+2 y^{2}-5 z\right) \newlineWhich of the following is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 5x210y2+z -5 x^{2}-10 y^{2}+z \newline(B) 5x210y2+25z -5 x^{2}-10 y^{2}+25 z \newline(C) 5x2+10y225z -5 x^{2}+10 y^{2}-25 z \newline(D) 5x2+2y25z -5 x^{2}+2 y^{2}-5 z
  1. Distribute 5-5: We need to distribute the 5-5 across the terms inside the parentheses. This means multiplying 5-5 by each term inside the parentheses separately.\newlineCalculation: 5×x2=5x2-5 \times x^{2} = -5x^{2}, 5×2y2=10y2-5 \times 2y^{2} = -10y^{2}, 5×(5z)=25z-5 \times (-5z) = 25z.
  2. Combine results: Combine the results of the distribution to get the equivalent expression.\newlineCalculation: 5x210y2+25z-5x^{2} - 10y^{2} + 25z.
  3. Match with choices: Match the resulting expression with the given choices.\newlineThe equivalent expression is 5x210y2+25z-5x^{2} - 10y^{2} + 25z, which corresponds to choice (B)(B).

More problems from Domain and range