Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(-4x^(3)*x^(2)y^(4))/(-2x^(3)y^(4))

4x3x2y42x3y4 \frac{-4 x^{3} \cdot x^{2} y^{4}}{-2 x^{3} y^{4}} =

Full solution

Q. 4x3x2y42x3y4 \frac{-4 x^{3} \cdot x^{2} y^{4}}{-2 x^{3} y^{4}} =
  1. Factorize Numerator and Denominator: First, let's factorize the numerator and the denominator.\newlineNumerator: 4x3x2y4=4x3+2y4=4x5y4-4x^{3}\cdot x^{2}\cdot y^{4} = -4x^{3+2}y^{4} = -4x^{5}y^{4}\newlineDenominator: 2x3y4-2x^{3}y^{4}
  2. Simplify by Dividing: Next, simplify the expression by dividing the numerator by the denominator.\newline(4x5y4)/(2x3y4)=(4/2)(x53)(y44)(-4x^{5}y^{4})/(-2x^{3}y^{4}) = (4/2)\cdot(x^{5-3})\cdot(y^{4-4})\newline=2x2y0= 2x^{2}y^{0}
  3. Further Simplification: Since y0y^{0} equals 11, we can simplify further:\newline2x21=2x22x^{2}\cdot1 = 2x^{2}

More problems from Multiplication with rational exponents