Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
(4)/(3+sqrt5)

Simplify.\newline43+5 \frac{4}{3+\sqrt{5}}

Full solution

Q. Simplify.\newline43+5 \frac{4}{3+\sqrt{5}}
  1. Rationalize Denominator: Rationalize the denominator of the fraction (43+5)(\frac{4}{3+\sqrt{5}}). To do this, we multiply the numerator and the denominator by the conjugate of the denominator, which is (35)(3-\sqrt{5}). (43+5)×(3535)(\frac{4}{3+\sqrt{5}}) \times (\frac{3-\sqrt{5}}{3-\sqrt{5}})
  2. Apply Distributive Property: Apply the distributive property (also known as the FOIL method) to the numerator.\newline(4×3)(4×5)=1245(4 \times 3) - (4 \times \sqrt{5}) = 12 - 4\sqrt{5}
  3. Calculate Denominator Squares: Apply the distributive property to the denominator.\newline(3+5)×(35)=32(5)2(3+\sqrt{5}) \times (3-\sqrt{5}) = 3^2 - (\sqrt{5})^2
  4. Subtract Denominator Values: Calculate the squares in the denominator.\newline32(5)2=953^2 - (\sqrt{5})^2 = 9 - 5
  5. Write Simplified Expression: Subtract the values in the denominator. 95=49 - 5 = 4
  6. Simplify Fraction: Write the simplified expression with the new numerator and denominator.\newline(1245)/4(12 - 4\sqrt{5}) / 4
  7. Simplify Fraction: Write the simplified expression with the new numerator and denominator.\newline(1245)/4(12 - 4\sqrt{5}) / 4 Simplify the fraction by dividing both terms in the numerator by the denominator.\newline(12/4)(45/4)=35(12/4) - (4\sqrt{5}/4) = 3 - \sqrt{5}