Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(3xy^(4))^(3)

(3xy4)3 \left(3 x y^{4}\right)^{3}

Full solution

Q. (3xy4)3 \left(3 x y^{4}\right)^{3}
  1. Apply Power Rule: We need to apply the power rule (ab)n=anbn(a*b)^n = a^n * b^n to the expression (3xy4)3(3xy^{4})^{3}. Using the power rule, we get: (3xy4)3=33(x)3(y4)3(3xy^{4})^{3} = 3^{3} * (x)^{3} * (y^{4})^{3}
  2. Calculate 333^3: Now we calculate each part separately.\newlineFirst, we calculate 333^{3}:\newline33=3×3×3=273^{3} = 3 \times 3 \times 3 = 27
  3. Calculate x3x^3: Next, we calculate (x)3(x)^{3}:(x)3=x×x×x=x3(x)^{3} = x \times x \times x = x^{3}
  4. Calculate y12y^{12}: Finally, we calculate (y4)3(y^{4})^{3}:\newlineUsing the power of a power rule (am)n=amn(a^{m})^{n} = a^{m*n}, we get:\newline(y4)3=y43=y12(y^{4})^{3} = y^{4*3} = y^{12}
  5. Combine Final Expression: Now we combine all the parts together to get the final simplified expression:\newline(3xy4)3=27×x3×y12(3xy^{4})^{3} = 27 \times x^{3} \times y^{12}

More problems from Evaluate integers raised to rational exponents