Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify:\newline(3x9x216)(13x+4)\left(\frac{3x}{9x^{2}-16}\right)-\left(\frac{1}{3x+4}\right)

Full solution

Q. Simplify:\newline(3x9x216)(13x+4)\left(\frac{3x}{9x^{2}-16}\right)-\left(\frac{1}{3x+4}\right)
  1. Factor Denominator: Factor the denominator of the first fraction.\newlineThe denominator is a difference of squares, which can be factored as follows:\newline9x216=(3x)242=(3x+4)(3x4)9x^2 - 16 = (3x)^2 - 4^2 = (3x + 4)(3x - 4)
  2. Rewrite First Fraction: Rewrite the first fraction with the factored denominator.\newline(3x)/(9x216)(3x)/(9x^2 - 16) becomes (3x)/((3x+4)(3x4))(3x)/((3x + 4)(3x - 4))
  3. Find Common Denominator: Find a common denominator for the two fractions.\newlineThe common denominator will be the product of (3x+4)(3x + 4) and (3x4)(3x - 4).
  4. Rewrite with Common Denominator: Rewrite both fractions with the common denominator.\newline(3x)/((3x+4)(3x4))(1)/(3x+4)(3x)/((3x + 4)(3x - 4)) - (1)/(3x + 4) becomes (3x)/((3x+4)(3x4))(3x4)/((3x+4)(3x4))(3x)/((3x + 4)(3x - 4)) - (3x - 4)/((3x + 4)(3x - 4))
  5. Combine Fractions: Combine the fractions.\newlineNow that they have a common denominator, we can combine the numerators:\newline(3x(3x4))/((3x+4)(3x4))(3x - (3x - 4))/((3x + 4)(3x - 4))
  6. Simplify Numerator: Simplify the numerator.\newlineDistribute the negative sign in the second term of the numerator:\newline3x3x+4=43x - 3x + 4 = 4
  7. Write Simplified Expression: Write the simplified expression.\newlineThe simplified form of the expression is:\newline4(3x+4)(3x4)\frac{4}{(3x + 4)(3x - 4)}

More problems from Simplify radical expressions involving fractions