Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(3x)/(2b)-(5x)/(6b)
Which of the following expressions is equivalent to the given expression for 
b!=0 ?
Choose 1 answer:
(A) 
(-x)/(6b)
(B) 
(-x)/(3b)
(c) 
(x)/(2b)
(D) 
(2x)/(3b)

3x2b5x6b \frac{3 x}{2 b}-\frac{5 x}{6 b} \newlineWhich of the following expressions is equivalent to the given expression for b0 b \neq 0 ?\newlineChoose 11 answer:\newline(A) x6b \frac{-x}{6 b} \newline(B) x3b \frac{-x}{3 b} \newline(C) x2b \frac{x}{2 b} \newline(D) 2x3b \frac{2 x}{3 b}

Full solution

Q. 3x2b5x6b \frac{3 x}{2 b}-\frac{5 x}{6 b} \newlineWhich of the following expressions is equivalent to the given expression for b0 b \neq 0 ?\newlineChoose 11 answer:\newline(A) x6b \frac{-x}{6 b} \newline(B) x3b \frac{-x}{3 b} \newline(C) x2b \frac{x}{2 b} \newline(D) 2x3b \frac{2 x}{3 b}
  1. Find common denominator: Find a common denominator for the two fractions.\newlineThe common denominator for 2b2b and 6b6b is 6b6b.
  2. Convert first fraction: Convert the first fraction to have the common denominator.\newline(3x2b)(\frac{3x}{2b}) can be written as (3x×32b×3)(\frac{3x \times 3}{2b \times 3}) to have a denominator of 6b6b.\newlineThis gives us (9x6b)(\frac{9x}{6b}).
  3. Subtract second fraction: Subtract the second fraction from the first fraction.\newlineNow we have (9x6b)(5x6b)(\frac{9x}{6b}) - (\frac{5x}{6b}).\newlineSince the denominators are the same, we can subtract the numerators directly.\newlineThis gives us (9x5x6b)(\frac{9x - 5x}{6b}).
  4. Perform numerator subtraction: Perform the subtraction in the numerator.\newline9x5x9x - 5x equals 4x4x.\newlineSo, we have 4x6b\frac{4x}{6b}.
  5. Simplify the fraction: Simplify the fraction.\newline(4x)/(6b)(4x)/(6b) can be simplified by dividing both the numerator and the denominator by 22.\newlineThis gives us (2x)/(3b)(2x)/(3b).

More problems from Identify equivalent linear expressions