Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression: (3x^(2)-3y)(sqrt3)/(2)

Simplify the expression: (3x23y)({3x^{2}-3y})32\frac{\sqrt3}{2}

Full solution

Q. Simplify the expression: (3x23y)({3x^{2}-3y})32\frac{\sqrt3}{2}
  1. Distribute 3\sqrt{3}: First, distribute the 3\sqrt{3} to both terms in the parenthesis.(3x233y3)2\frac{(3x^{2} \cdot \sqrt{3} - 3y \cdot \sqrt{3})}{2}
  2. Split into two fractions: Now, split the fractions" target="_blank" class="backlink">fraction into two separate fractions.\newline(3x232)(3y32)(\frac{3x^{2} \sqrt{3}}{2}) - (\frac{3y \sqrt{3}}{2})
  3. Simplify each term: Simplify each term separately. 32x2332y3\frac{3}{2}x^{2} \cdot \sqrt{3} - \frac{3}{2}y \cdot \sqrt{3}
  4. Write final expression: Write the final simplified expression.\newline(332)x2(332)y(\frac{3\sqrt{3}}{2})x^{2} - (\frac{3\sqrt{3}}{2})y