Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(3g-4)(2g-8)=ag^(2)+bg+c
In the given equation, 
a,b, and 
c are constants. What is the value of 
a ?
Choose 1 answer:
(A) -32
(B) -16
(C) 5
(D) 6

(3g4)(2g8)=ag2+bg+c (3 g-4)(2 g-8)=a g^{2}+b g+c \newlineIn the given equation, a,b a, b , and c c are constants. What is the value of a a ?\newlineChoose 11 answer:\newline(A) 32-32\newline(B) 16-16\newline(C) 55\newline(D) 66

Full solution

Q. (3g4)(2g8)=ag2+bg+c (3 g-4)(2 g-8)=a g^{2}+b g+c \newlineIn the given equation, a,b a, b , and c c are constants. What is the value of a a ?\newlineChoose 11 answer:\newline(A) 32-32\newline(B) 16-16\newline(C) 55\newline(D) 66
  1. Expand Expression: We need to expand the expression (3g4)(2g8)(3g-4)(2g-8) to find the coefficient of the g2g^2 term, which will give us the value of aa. Expanding the expression using the distributive property (also known as the FOIL method for binomials): (3g4)(2g8)=3g×2g+3g×(8)+(4)×2g+(4)×(8)(3g-4)(2g-8) = 3g \times 2g + 3g \times (-8) + (-4) \times 2g + (-4) \times (-8)
  2. Perform Multiplication: Now we perform the multiplication for each term:\newline3g×2g=6g23g \times 2g = 6g^2\newline3g×(8)=24g3g \times (-8) = -24g\newline(4)×2g=8g(-4) \times 2g = -8g\newline(4)×(8)=32(-4) \times (-8) = 32
  3. Combine Like Terms: Combine the like terms to get the expanded form:\newline6g224g8g+326g^2 - 24g - 8g + 32\newline6g232g+326g^2 - 32g + 32
  4. Find Coefficient: From the expanded form, we can see that the coefficient of g2g^2 is 66. This is the value of aa.

More problems from Write a quadratic function from its x-intercepts and another point