Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

((3^(-6))/(7^(-3)))^(5)=?
Choose 1 answer:
(A) 
(7^(15))/(3^(30))
(B) 
(3^(15))/(7^(30))
(C) 
(7^(3))/(3^(-30))

(3673)5=? \left(\frac{3^{-6}}{7^{-3}}\right)^{5}=? \newlineChoose 11 answer:\newline(A) 715330 \frac{7^{15}}{3^{30}} \newline(B) 315730 \frac{3^{15}}{7^{30}} \newline(C) 73330 \frac{7^{3}}{3^{-30}}

Full solution

Q. (3673)5=? \left(\frac{3^{-6}}{7^{-3}}\right)^{5}=? \newlineChoose 11 answer:\newline(A) 715330 \frac{7^{15}}{3^{30}} \newline(B) 315730 \frac{3^{15}}{7^{30}} \newline(C) 73330 \frac{7^{3}}{3^{-30}}
  1. Rewrite with Exponent Property: Rewrite the expression using the property of exponents that states (an)=1(an)(a^{-n}) = \frac{1}{(a^n)}.(3673)5\left(\frac{3^{-6}}{7^{-3}}\right)^{5} can be rewritten as (136/173)5\left(\frac{1}{3^6}/\frac{1}{7^3}\right)^{5}.
  2. Simplify by Flipping Fraction: Simplify the expression inside the parentheses by flipping the fraction in the denominator.\newlineThis gives us (136731)5\left(\frac{1}{3^6}\cdot\frac{7^3}{1}\right)^5.
  3. Multiply Fractions: Multiply the fractions inside the parentheses.\newlineThis simplifies to (7336)5\left(\frac{7^3}{3^6}\right)^5.
  4. Apply Power of a Power Rule: Apply the power of a power rule, which states (ab)n=anbn(\frac{a}{b})^{n} = \frac{a^{n}}{b^{n}}.\newlineThis gives us (73×536×5)(\frac{7^{3\times5}}{3^{6\times5}}).
  5. Multiply Exponents: Multiply the exponents inside the parentheses.\newlineThis simplifies to 715/3307^{15}/3^{30}.

More problems from Multiplication with rational exponents