Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve for \(x\): (3)/(4)x-(3)/(4) >= -6

Solve for xx: 34x346\frac{3}{4}x-\frac{3}{4} \geq -6

Full solution

Q. Solve for xx: 34x346\frac{3}{4}x-\frac{3}{4} \geq -6
  1. Isolate variable term: Step 11: Isolate the variable term on one side.\newlineAdd (34)(\frac{3}{4}) to both sides to eliminate the constant term on the left side.\newline(34)x(34)+(34)6+(34)(\frac{3}{4})x - (\frac{3}{4}) + (\frac{3}{4}) \geq -6 + (\frac{3}{4})
  2. Simplify both sides: Step 22: Simplify both sides.\newline(34)x6+(34)(\frac{3}{4})x \geq -6 + (\frac{3}{4})
  3. Convert 6-6 to fraction: Step 33: Convert 6-6 to a fraction with the same denominator as (3/4)(3/4) to simplify addition.\newline6=24/4-6 = -24/4\newlineNow, add 24/4-24/4 and 3/43/4.\newline24/4+3/4=21/4-24/4 + 3/4 = -21/4
  4. Solve for x: Step 44: Now, solve for x.\newline(34)x214(\frac{3}{4})x \geq -\frac{21}{4}\newlineTo isolate x, divide both sides by (34)(\frac{3}{4}).\newlinex(214)/(34)x \geq (\frac{-21}{4}) / (\frac{3}{4})
  5. Final solution: Step 55: Simplify the division of fractions by multiplying by the reciprocal. \newlinex214×43x \geq \frac{-21}{4} \times \frac{4}{3}\newlinex213x \geq \frac{-21}{3}\newlinex7x \geq -7

More problems from Multiplication with rational exponents