Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[3(4-a)-b=5(3a-2b)+8],[3(2b-3)=7a]:}
Consider the system of equations. If 
(a,b) is the solution to the system, then what is the value of 
a*b ?
Choose 1 answer:
(A) 
(7)/(3)
(B) 
(38)/(9)
(c) 
(59)/(9)
(D) 
(266)/(27)

3(4a)bamp;=5(3a2b)+83(2b3)amp;=7a \begin{aligned} 3(4-a)-b & =5(3 a-2 b)+8 \\ 3(2 b-3) & =7 a \end{aligned} \newlineConsider the system of equations. If (a,b) (a, b) is the solution to the system, then what is the value of ab a \cdot b ?\newlineChoose 11 answer:\newline(A) 73 \frac{7}{3} \newline(B) 389 \frac{38}{9} \newline(C) 599 \frac{59}{9} \newline(D) 26627 \frac{266}{27}

Full solution

Q. 3(4a)b=5(3a2b)+83(2b3)=7a \begin{aligned} 3(4-a)-b & =5(3 a-2 b)+8 \\ 3(2 b-3) & =7 a \end{aligned} \newlineConsider the system of equations. If (a,b) (a, b) is the solution to the system, then what is the value of ab a \cdot b ?\newlineChoose 11 answer:\newline(A) 73 \frac{7}{3} \newline(B) 389 \frac{38}{9} \newline(C) 599 \frac{59}{9} \newline(D) 26627 \frac{266}{27}
  1. Rearranging terms: Now, let's rearrange the terms to bring like terms to one side and constants to the other side.\newlineWe get: 3a+15a+b+10b=12+83a + 15a + b + 10b = 12 + 8.\newlineCombining like terms, we have: 18a+11b=2018a + 11b = 20.
  2. Expanding the second equation: Next, let's expand the second equation in the system: 3(2b3)=7a3(2b-3)=7a.\newlineExpanding gives us: 6b9=7a6b - 9 = 7a.\newlineRearranging to express aa in terms of bb, we get: 7a=6b97a = 6b - 9.\newlineDividing by 77, we have: a=6b97a = \frac{6b - 9}{7}.
  3. Substituting expression for a: Now, let's substitute the expression for a from the second equation into the first equation.\newlineSubstituting a=6b97a = \frac{6b - 9}{7} into 18a+11b=2018a + 11b = 20, we get: 18(6b97)+11b=2018\left(\frac{6b - 9}{7}\right) + 11b = 20.\newlineMultiplying through by 77 to clear the fraction, we have: 18(6b9)+77b=14018(6b - 9) + 77b = 140.
  4. Solving for b: Expanding and combining like terms, we get: 108b162+77b=140108b - 162 + 77b = 140.\newlineCombining like terms again, we have: 185b162=140185b - 162 = 140.\newlineAdding 162162 to both sides, we get: 185b=302185b = 302.
  5. Substituting value of b into expression for a: Now, let's solve for b by dividing both sides by 185185.\newlineWe get: b = \frac{302302}{185185}.\newlineSimplifying the fraction, we have: b = \frac{302302}{185185}.
  6. Performing operations inside parentheses: Next, we substitute the value of b b back into the expression for a a : a=6b97 a = \frac{6b - 9}{7} .\newlineSubstituting b=302185 b = \frac{302}{185} into a=6b97 a = \frac{6b - 9}{7} , we get: a=6(302185)97 a = \frac{6(\frac{302}{185}) - 9}{7} .
  7. Calculating a and b in fraction form: Now, let's perform the operations inside the parentheses.\newlineMultiplying 66 by 302185\frac{302}{185}, we get: a=181218597a = \frac{1812}{185} - \frac{9}{7}.\newlineConverting 99 to a fraction with a denominator of 185185, we get: a=18121851665185)/7a = \frac{1812}{185} - \frac{1665}{185})/7.
  8. Multiplying a and b: Subtracting the fractions, we get: a=147185/7a = \frac{147}{185}/7.\newlineNow, we divide 147147 by 185185 and then divide the result by 77.\newlineWe have: a=147185×7a = \frac{147}{185 \times 7}.
  9. Simplifying the fraction: Multiplying the denominators, we get: a=1471295 a = \frac{147}{1295} .\newlineNow, we have both a a and b b in fraction form.
  10. Comparing the fraction with answer choices: Finally, we multiply aa and bb to find a×ba \times b.\newlineMultiplying a=1471295a = \frac{147}{1295} by b=302185b = \frac{302}{185}, we get: a×b=(1471295)×(302185)a \times b = \left(\frac{147}{1295}\right) \times \left(\frac{302}{185}\right).
  11. Rechecking calculations: Multiplying the numerators and denominators, we get: ab=1473021295185a \cdot b = \frac{147 \cdot 302}{1295 \cdot 185}.\newlineCalculating the multiplication, we have: ab=44414239675a \cdot b = \frac{44414}{239675}.
  12. Rechecking calculations: Multiplying the numerators and denominators, we get: ab=1473021295185a \cdot b = \frac{147 \cdot 302}{1295 \cdot 185}.\newlineCalculating the multiplication, we have: ab=44414239675a \cdot b = \frac{44414}{239675}. Now, let's simplify the fraction if possible.\newlineHowever, 4441444414 and 239675239675 do not have common factors other than 11, so the fraction is already in its simplest form.
  13. Rechecking calculations: Multiplying the numerators and denominators, we get: ab=1473021295185a \cdot b = \frac{147 \cdot 302}{1295 \cdot 185}.\newlineCalculating the multiplication, we have: ab=44414239675a \cdot b = \frac{44414}{239675}. Now, let's simplify the fraction if possible.\newlineHowever, 4441444414 and 239675239675 do not have common factors other than 11, so the fraction is already in its simplest form. We can now compare the fraction 44414239675\frac{44414}{239675} with the given answer choices.\newlineNone of the answer choices match this fraction, which indicates a possible calculation error.\newlineLet's recheck our calculations.

More problems from Domain and range