3(4−a)−b3(2b−3)amp;=5(3a−2b)+8amp;=7aConsider the system of equations. If (a,b) is the solution to the system, then what is the value of a⋅b ?Choose 1 answer:(A) 37(B) 938(C) 959(D) 27266
Q. 3(4−a)−b3(2b−3)=5(3a−2b)+8=7aConsider the system of equations. If (a,b) is the solution to the system, then what is the value of a⋅b ?Choose 1 answer:(A) 37(B) 938(C) 959(D) 27266
Rearranging terms: Now, let's rearrange the terms to bring like terms to one side and constants to the other side.We get: 3a+15a+b+10b=12+8.Combining like terms, we have: 18a+11b=20.
Expanding the second equation: Next, let's expand the second equation in the system: 3(2b−3)=7a.Expanding gives us: 6b−9=7a.Rearranging to express a in terms of b, we get: 7a=6b−9.Dividing by 7, we have: a=76b−9.
Substituting expression for a: Now, let's substitute the expression for a from the second equation into the first equation.Substituting a=76b−9 into 18a+11b=20, we get: 18(76b−9)+11b=20.Multiplying through by 7 to clear the fraction, we have: 18(6b−9)+77b=140.
Solving for b: Expanding and combining like terms, we get: 108b−162+77b=140.Combining like terms again, we have: 185b−162=140.Adding 162 to both sides, we get: 185b=302.
Substituting value of into expression for : Now, let's solve for by dividing both sides by .\newlineWe get: b = \frac{302302302}{185185185}.\newlineSimplifying the fraction, we have: b = \frac{302302302}{185185185}.
Performing operations inside parentheses: Next, we substitute the value of b b b back into the expression for a a a: a=6b−97 a = \frac{6b - 9}{7} a=76b−9.\newlineSubstituting b=302185 b = \frac{302}{185} b=185302 into a=6b−97 a = \frac{6b - 9}{7} a=76b−9, we get: a=6(302185)−97 a = \frac{6(\frac{302}{185}) - 9}{7} a=76(185302)−9.
Calculating a and b in fraction form: Now, let's perform the operations inside the parentheses.\newlineMultiplying 666 by 302185\frac{302}{185}185302, we get: a=1812185−97a = \frac{1812}{185} - \frac{9}{7}a=1851812−79.\newlineConverting 999 to a fraction with a denominator of 185185185, we get: a=1812185−1665185)/7a = \frac{1812}{185} - \frac{1665}{185})/7a=1851812−1851665)/7.
Multiplying a and b: Subtracting the fractions, we get: a=147185/7a = \frac{147}{185}/7a=185147/7.\newlineNow, we divide 147147147 by 185185185 and then divide the result by 777.\newlineWe have: a=147185×7a = \frac{147}{185 \times 7}a=185×7147.
Simplifying the fraction: Multiplying the denominators, we get: a=1471295 a = \frac{147}{1295} a=1295147.\newlineNow, we have both a a a and b b b in fraction form.
Comparing the fraction with answer choices: Finally, we multiply aaa and bbb to find a×ba \times ba×b.\newlineMultiplying a=1471295a = \frac{147}{1295}a=1295147 by b=302185b = \frac{302}{185}b=185302, we get: a×b=(1471295)×(302185)a \times b = \left(\frac{147}{1295}\right) \times \left(\frac{302}{185}\right)a×b=(1295147)×(185302).
Rechecking calculations: Multiplying the numerators and denominators, we get: a⋅b=147⋅3021295⋅185a \cdot b = \frac{147 \cdot 302}{1295 \cdot 185}a⋅b=1295⋅185147⋅302.\newlineCalculating the multiplication, we have: a⋅b=44414239675a \cdot b = \frac{44414}{239675}a⋅b=23967544414.
Rechecking calculations: Multiplying the numerators and denominators, we get: a⋅b=147⋅3021295⋅185a \cdot b = \frac{147 \cdot 302}{1295 \cdot 185}a⋅b=1295⋅185147⋅302.\newlineCalculating the multiplication, we have: a⋅b=44414239675a \cdot b = \frac{44414}{239675}a⋅b=23967544414. Now, let's simplify the fraction if possible.\newlineHowever, 444144441444414 and 239675239675239675 do not have common factors other than 111, so the fraction is already in its simplest form.
Rechecking calculations: Multiplying the numerators and denominators, we get: a⋅b=147⋅3021295⋅185a \cdot b = \frac{147 \cdot 302}{1295 \cdot 185}a⋅b=1295⋅185147⋅302.\newlineCalculating the multiplication, we have: a⋅b=44414239675a \cdot b = \frac{44414}{239675}a⋅b=23967544414. Now, let's simplify the fraction if possible.\newlineHowever, 444144441444414 and 239675239675239675 do not have common factors other than 111, so the fraction is already in its simplest form. We can now compare the fraction 44414239675\frac{44414}{239675}23967544414 with the given answer choices.\newlineNone of the answer choices match this fraction, which indicates a possible calculation error.\newlineLet's recheck our calculations.