Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(2x)/(x-3)-(x+3)/(x-3)
Which expression is equivalent to the sum for 
x!=3 ?
Choose 1 answer:
(A) 1
(B) 
(x+3)/(x-3)
(c) 
(2x)/(x-3)-1
(D) 
(3x+3)/(x-3)

2xx3x+3x3 \frac{2 x}{x-3}-\frac{x+3}{x-3} \newlineWhich expression is equivalent to the sum for x3 x \neq 3 ?\newlineChoose 11 answer:\newline(A) 11\newline(B) x+3x3 \frac{x+3}{x-3} \newline(C) 2xx31 \frac{2 x}{x-3}-1 \newline(D) 3x+3x3 \frac{3 x+3}{x-3}

Full solution

Q. 2xx3x+3x3 \frac{2 x}{x-3}-\frac{x+3}{x-3} \newlineWhich expression is equivalent to the sum for x3 x \neq 3 ?\newlineChoose 11 answer:\newline(A) 11\newline(B) x+3x3 \frac{x+3}{x-3} \newline(C) 2xx31 \frac{2 x}{x-3}-1 \newline(D) 3x+3x3 \frac{3 x+3}{x-3}
  1. Observation: First, we observe that both terms have the same denominator, (x3)(x-3). This means we can combine the numerators over the common denominator.
  2. Combine Numerators: Combine the numerators over the common denominator:\newline(2xx3)(x+3x3)=2x(x+3)x3(\frac{2x}{x-3}) - (\frac{x+3}{x-3}) = \frac{2x - (x+3)}{x-3}
  3. Simplify Numerator: Simplify the numerator by distributing the negative sign and combining like terms: 2xx3=x32x - x - 3 = x - 3
  4. Final Simplification: Now we have the simplified expression: (x3)/(x3)(x - 3)/(x-3)
  5. Final Simplification: Now we have the simplified expression:\newline(x3)/(x3)(x - 3)/(x-3)Since xx is not equal to 33, we can simplify the expression further by canceling out (x3)(x-3) in the numerator and the denominator:\newline(x3)/(x3)=1(x - 3)/(x-3) = 1, for x3x\neq3

More problems from Identify equivalent linear expressions