Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(-2x^(2)y^(7))^(5)

(2x2y7)5 \left(-2 x^{2} y^{7}\right)^{5}

Full solution

Q. (2x2y7)5 \left(-2 x^{2} y^{7}\right)^{5}
  1. Identify base and exponent: Identify the base and the exponent in the expression. (2x2y7)5(-2x^{2}y^{7})^{5} has a base of 2x2y7-2x^{2}y^{7} and an exponent of 55.
  2. Apply power of product rule: Apply the power of a product rule: (ab)n=anbn (ab)^n = a^n * b^n . (2x2y7)5=(2)5(x2)5(y7)5 (-2x^{2}y^{7})^5 = (-2)^5 * (x^2)^5 * (y^7)^5 .
  3. Calculate each part: Calculate each part:\newline(2)5=32(-2)^5 = -32,\newline(x2)5=x(25)=x10(x^2)^5 = x^{(2*5)} = x^{10},\newline(y7)5=y(75)=y35(y^7)^5 = y^{(7*5)} = y^{35}.
  4. Combine results: Combine the results:\newline32×x10×y35-32 \times x^{10} \times y^{35}.

More problems from Evaluate rational exponents