Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
(2x+2)^(4)-(x+1)^(4)

Simplify.\newline(2x+2)4(x+1)4 (2 x+2)^{4}-(x+1)^{4}

Full solution

Q. Simplify.\newline(2x+2)4(x+1)4 (2 x+2)^{4}-(x+1)^{4}
  1. Expand Expression: We need to expand both expressions (2x+2)4(2x+2)^{4} and (x+1)4(x+1)^{4} using the binomial theorem or by multiplying the binomials step by step.
  2. Expand (2x+2)4(2x+2)^{4}: First, let's expand (2x+2)4(2x+2)^{4}. This is equivalent to ((2(x+1))4)((2(x+1))^4), which can be simplified by taking the 242^4 outside the binomial expansion.\newline(2x+2)4=(24)×(x+1)4(2x+2)^{4} = (2^4) \times (x+1)^{4}
  3. Factor Out Common Term: Now, we have (24)(x+1)4(x+1)4(2^4) \cdot (x+1)^{4} - (x+1)^{4}. Since (x+1)4(x+1)^{4} is common in both terms, we can factor it out.(24)(x+1)4(x+1)4=((24)1)(x+1)4(2^4) \cdot (x+1)^{4} - (x+1)^{4} = ((2^4) - 1) \cdot (x+1)^{4}
  4. Calculate Result: Calculate 242^4 and subtract 11 from it.\newline(24)1=161=15(2^4) - 1 = 16 - 1 = 15
  5. Expand (x+1)4(x+1)^{4}: Now, we have 15×(x+1)415 \times (x+1)^{4}. We need to expand (x+1)4(x+1)^{4} using the binomial theorem or by multiplying the binomial by itself four times.
  6. Apply Binomial Theorem: Expanding (x+1)4(x+1)^{4} using the binomial theorem gives us:\newline(x+1)4=x4+4x3+6x2+4x+1(x+1)^{4} = x^{4} + 4x^{3} + 6x^{2} + 4x + 1
  7. Multiply by 1515: Now, multiply the expanded form of (x+1)4(x+1)^{4} by 1515: 15×(x4+4x3+6x2+4x+1)=15x4+60x3+90x2+60x+1515 \times (x^4 + 4x^3 + 6x^2 + 4x + 1) = 15x^4 + 60x^3 + 90x^2 + 60x + 15
  8. Final Answer: The final answer is the expanded form of the expression: 15x4+60x3+90x2+60x+1515x^4 + 60x^3 + 90x^2 + 60x + 15