Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(-2j^(2))*((1)/(4))+((1)/(2)j^(2)-1)
Which of the following expressions is equivalent to the given expression?
Choose 1 answer:
(A) -1
(B) 
(3)/(8)j^(2)-1
(C) 
((j)/(2)+1)((j)/(2)-1)
(D) 
(j+1)(j-1)

(2j2)(14)+(12j21) \left(-2 j^{2}\right) \cdot\left(\frac{1}{4}\right)+\left(\frac{1}{2} j^{2}-1\right) \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 1-1\newline(B) 38j21 \frac{3}{8} j^{2}-1 \newline(C) (j2+1)(j21) \left(\frac{j}{2}+1\right)\left(\frac{j}{2}-1\right) \newline(D) (j+1)(j1) (j+1)(j-1)

Full solution

Q. (2j2)(14)+(12j21) \left(-2 j^{2}\right) \cdot\left(\frac{1}{4}\right)+\left(\frac{1}{2} j^{2}-1\right) \newlineWhich of the following expressions is equivalent to the given expression?\newlineChoose 11 answer:\newline(A) 1-1\newline(B) 38j21 \frac{3}{8} j^{2}-1 \newline(C) (j2+1)(j21) \left(\frac{j}{2}+1\right)\left(\frac{j}{2}-1\right) \newline(D) (j+1)(j1) (j+1)(j-1)
  1. Simplify Multiplication: First, let's simplify the expression (2j2)(14)+(12j21)(-2j^{2})\cdot\left(\frac{1}{4}\right)+\left(\frac{1}{2}j^{2}-1\right) by handling the multiplication and addition separately.
  2. Handle Multiplication: We start with the multiplication part: (2j2)(14)(-2j^{2})*\left(\frac{1}{4}\right). Since j2j^2 is equal to 1-1 (because jj is the imaginary unit), we can replace j2j^2 with 1-1.\newline(2×1)×(14)=24=12(-2 \times -1) \times \left(\frac{1}{4}\right) = \frac{2}{4} = \frac{1}{2}.
  3. Simplify Addition: Now let's simplify the addition part: (12j21)\left(\frac{1}{2}j^{2}-1\right). Again, replacing j2j^2 with 1-1, we get:(12×1)1=121=1222=32\left(\frac{1}{2} \times -1\right) - 1 = -\frac{1}{2} - 1 = -\frac{1}{2} - \frac{2}{2} = -\frac{3}{2}.
  4. Combine Simplified Parts: Combine the two parts we've simplified: 12+(32)\frac{1}{2} + \left(-\frac{3}{2}\right). 1232=22=1\frac{1}{2} - \frac{3}{2} = -\frac{2}{2} = -1.
  5. Final Result: The simplified expression is 1-1, which matches option (A)(A).

More problems from Multiplication with rational exponents