Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Write the expression in simplest form.
(2a+b)/(4a^(2)-b^(2))

Write the expression in simplest form.\newline2a+b4a2b2 \frac{2 a+b}{4 a^{2}-b^{2}}

Full solution

Q. Write the expression in simplest form.\newline2a+b4a2b2 \frac{2 a+b}{4 a^{2}-b^{2}}
  1. Recognize the denominator: Recognize the denominator as a difference of squares. The denominator 4a2b24a^2 - b^2 can be factored using the difference of squares formula, which is a2b2=(a+b)(ab)a^2 - b^2 = (a + b)(a - b).
  2. Factor the denominator: Factor the denominator.\newline4a2b2=(2a)2b2=(2a+b)(2ab)4a^2 - b^2 = (2a)^2 - b^2 = (2a + b)(2a - b)
  3. Simplify the expression: Simplify the expression by canceling out common factors.\newlineThe numerator (2a+b)(2a + b) has a common factor with one of the factors in the denominator (2a+b)(2a + b).\newline(2a+b)/[(2a+b)(2ab)]=1/(2ab)(2a + b) / [(2a + b)(2a - b)] = 1 / (2a - b)
  4. Write final simplified expression: Write down the final simplified expression.\newlineThe expression simplifies to 12ab\frac{1}{2a - b}.

More problems from Simplify radical expressions involving fractions