Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[2(x-(1)/(3))-(3)/(2)(y-(1)/(6))=0],[3(y-(1)/(2))+(8)/(3)(x-(1)/(6))=0]:}
Consider the system of equations. If 
(x,y) is the solution to the system, what is the value of the sum of 
x and 
y ?
Choose 1 answer:
(A) 
(5)/(6)
(B) 
(25)/(36)
(C) 
(2)/(3)
(D) None of the above

2(x13)32(y16)=03(y12)+83(x16)=0 \begin{array}{l} 2\left(x-\frac{1}{3}\right)-\frac{3}{2}\left(y-\frac{1}{6}\right)=0 \\ 3\left(y-\frac{1}{2}\right)+\frac{8}{3}\left(x-\frac{1}{6}\right)=0 \end{array} \newlineConsider the system of equations. If (x,y) (x, y) is the solution to the system, what is the value of the sum of x x and y y ?\newlineChoose 11 answer:\newline(A) 56 \frac{5}{6} \newline(B) 2536 \frac{25}{36} \newline(C) 23 \frac{2}{3} \newline(D) None of the above

Full solution

Q. 2(x13)32(y16)=03(y12)+83(x16)=0 \begin{array}{l} 2\left(x-\frac{1}{3}\right)-\frac{3}{2}\left(y-\frac{1}{6}\right)=0 \\ 3\left(y-\frac{1}{2}\right)+\frac{8}{3}\left(x-\frac{1}{6}\right)=0 \end{array} \newlineConsider the system of equations. If (x,y) (x, y) is the solution to the system, what is the value of the sum of x x and y y ?\newlineChoose 11 answer:\newline(A) 56 \frac{5}{6} \newline(B) 2536 \frac{25}{36} \newline(C) 23 \frac{2}{3} \newline(D) None of the above
  1. Write Equations: First, let's write down the system of equations:\newline{2(x13)32(y16)=03(y12)+83(x16)=0 \begin{cases} 2\left(x-\frac{1}{3}\right)-\frac{3}{2}\left(y-\frac{1}{6}\right)=0 \\ 3\left(y-\frac{1}{2}\right)+\frac{8}{3}\left(x-\frac{1}{6}\right)=0 \end{cases}
  2. Simplify Equations: Next, we simplify each equation by distributing the constants and moving all terms to one side:\newlineFor the first equation:\newline2x2332y+14=0 2x - \frac{2}{3} - \frac{3}{2}y + \frac{1}{4} = 0 \newline2x32y23+14=0 2x - \frac{3}{2}y - \frac{2}{3} + \frac{1}{4} = 0 \newline2x32y812+312=0 2x - \frac{3}{2}y - \frac{8}{12} + \frac{3}{12} = 0 \newline2x32y512=0 2x - \frac{3}{2}y - \frac{5}{12} = 0 \newline2x32y=512 2x - \frac{3}{2}y = \frac{5}{12} \newlineFor the second equation:\newline3y32+83x818=0 3y - \frac{3}{2} + \frac{8}{3}x - \frac{8}{18} = 0 \newline3y+83x3249=0 3y + \frac{8}{3}x - \frac{3}{2} - \frac{4}{9} = 0 \newline3y+83x271849=0 3y + \frac{8}{3}x - \frac{27}{18} - \frac{4}{9} = 0 \newline3y+83x2718818=0 3y + \frac{8}{3}x - \frac{27}{18} - \frac{8}{18} = 0 \newline3y+83x3518=0 3y + \frac{8}{3}x - \frac{35}{18} = 0 \newline2x32y23+14=0 2x - \frac{3}{2}y - \frac{2}{3} + \frac{1}{4} = 0 00
  3. Standard Form: Now we have the system of equations in a more standard form:\newline{2x32y=5123y+83x=3518 \begin{cases} 2x - \frac{3}{2}y = \frac{5}{12} \\ 3y + \frac{8}{3}x = \frac{35}{18} \end{cases}
  4. Elimination Method: To solve the system, we can use either substitution or elimination. Let's use the elimination method. We'll multiply the first equation by 33 and the second equation by 22 to eliminate y:\newline{(2x32y)3=5123(3y+83x)2=35182 \begin{cases} (2x - \frac{3}{2}y) \cdot 3 = \frac{5}{12} \cdot 3 \\ (3y + \frac{8}{3}x) \cdot 2 = \frac{35}{18} \cdot 2 \end{cases} \newlineThis gives us:\newline{6x92y=15126y+163x=359 \begin{cases} 6x - \frac{9}{2}y = \frac{15}{12} \\ 6y + \frac{16}{3}x = \frac{35}{9} \end{cases}
  5. Simplify Equations: Now we simplify the equations:\newline{6x92y=546y+163x=7018 \begin{cases} 6x - \frac{9}{2}y = \frac{5}{4} \\ 6y + \frac{16}{3}x = \frac{70}{18} \end{cases} \newline{6x92y=546y+163x=359 \begin{cases} 6x - \frac{9}{2}y = \frac{5}{4} \\ 6y + \frac{16}{3}x = \frac{35}{9} \end{cases}
  6. Common Denominator: Next, we'll multiply the second equation by 22 to get the same denominator for x in both equations:\newline{6x92y=54(6y+163x)2=(359)2 \begin{cases} 6x - \frac{9}{2}y = \frac{5}{4} \\ (6y + \frac{16}{3}x) \cdot 2 = (\frac{35}{9}) \cdot 2 \end{cases} \newlineThis gives us:\newline{6x92y=5412y+323x=709 \begin{cases} 6x - \frac{9}{2}y = \frac{5}{4} \\ 12y + \frac{32}{3}x = \frac{70}{9} \end{cases}
  7. Combine Equations: Now we have the system:\newline{6x92y=5412y+323x=709 \begin{cases} 6x - \frac{9}{2}y = \frac{5}{4} \\ 12y + \frac{32}{3}x = \frac{70}{9} \end{cases} \newlineWe can multiply the first equation by 22 to match the denominators:\newline{(6x92y)2=(54)212y+323x=709 \begin{cases} (6x - \frac{9}{2}y) \cdot 2 = (\frac{5}{4}) \cdot 2 \\ 12y + \frac{32}{3}x = \frac{70}{9} \end{cases} \newlineThis gives us:\newline{12x9y=5212y+323x=709 \begin{cases} 12x - 9y = \frac{5}{2} \\ 12y + \frac{32}{3}x = \frac{70}{9} \end{cases}
  8. Solve for x: Now we can add the two equations together to eliminate y:\newline(12x9y)+(12y+323x)=52+709 (12x - 9y) + (12y + \frac{32}{3}x) = \frac{5}{2} + \frac{70}{9} \newline12x+323x=52+709+9y12y 12x + \frac{32}{3}x = \frac{5}{2} + \frac{70}{9} + 9y - 12y \newline12x+323x=52+709 12x + \frac{32}{3}x = \frac{5}{2} + \frac{70}{9}
  9. Substitute x into Equation: To combine the x terms, we need a common denominator. We multiply 1212x by 33/33:\newline363x+323x=52+709 \frac{36}{3}x + \frac{32}{3}x = \frac{5}{2} + \frac{70}{9} \newline683x=52+709 \frac{68}{3}x = \frac{5}{2} + \frac{70}{9}
  10. Solve for y: Now we find a common denominator for the right side of the equation:\newline683x=5929+70292 \frac{68}{3}x = \frac{5 \cdot 9}{2 \cdot 9} + \frac{70 \cdot 2}{9 \cdot 2} \newline683x=4518+14018 \frac{68}{3}x = \frac{45}{18} + \frac{140}{18} \newline683x=18518 \frac{68}{3}x = \frac{185}{18}
  11. Calculate Sum: Now we solve for x:\newlinex=18518368 x = \frac{185}{18} \cdot \frac{3}{68} \newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} \newlinex=185408 x = \frac{185}{408} \newlinex=512 x = \frac{5}{12}
  12. Calculate Sum: Now we solve for x:\newlinex=18518368 x = \frac{185}{18} \cdot \frac{3}{68} \newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} \newlinex=185408 x = \frac{185}{408} \newlinex=512 x = \frac{5}{12} Now that we have x, we can substitute it back into one of the original equations to find y. Let's use the first equation:\newline2x32y=512 2x - \frac{3}{2}y = \frac{5}{12} \newline251232y=512 2 \cdot \frac{5}{12} - \frac{3}{2}y = \frac{5}{12} \newline5632y=512 \frac{5}{6} - \frac{3}{2}y = \frac{5}{12}
  13. Calculate Sum: Now we solve for x:\newlinex=18518368 x = \frac{185}{18} \cdot \frac{3}{68} \newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} \newlinex=185408 x = \frac{185}{408} \newlinex=512 x = \frac{5}{12} Now that we have x, we can substitute it back into one of the original equations to find y. Let's use the first equation:\newline2x32y=512 2x - \frac{3}{2}y = \frac{5}{12} \newline251232y=512 2 \cdot \frac{5}{12} - \frac{3}{2}y = \frac{5}{12} \newline5632y=512 \frac{5}{6} - \frac{3}{2}y = \frac{5}{12} Now we solve for y:\newline32y=51256 -\frac{3}{2}y = \frac{5}{12} - \frac{5}{6} \newline32y=5121012 -\frac{3}{2}y = \frac{5}{12} - \frac{10}{12} \newline32y=512 -\frac{3}{2}y = -\frac{5}{12} \newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 00\newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 11\newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 22
  14. Calculate Sum: Now we solve for x:\newlinex=18518368 x = \frac{185}{18} \cdot \frac{3}{68} \newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} \newlinex=185408 x = \frac{185}{408} \newlinex=512 x = \frac{5}{12} Now that we have x, we can substitute it back into one of the original equations to find y. Let's use the first equation:\newline2x32y=512 2x - \frac{3}{2}y = \frac{5}{12} \newline251232y=512 2 \cdot \frac{5}{12} - \frac{3}{2}y = \frac{5}{12} \newline5632y=512 \frac{5}{6} - \frac{3}{2}y = \frac{5}{12} Now we solve for y:\newline32y=51256 -\frac{3}{2}y = \frac{5}{12} - \frac{5}{6} \newline32y=5121012 -\frac{3}{2}y = \frac{5}{12} - \frac{10}{12} \newline32y=512 -\frac{3}{2}y = -\frac{5}{12} \newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 00\newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 11\newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 22Now we have both x and y:\newlinex=512 x = \frac{5}{12} \newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 22\newlineThe sum of x and y is:\newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 55
  15. Calculate Sum: Now we solve for x:\newlinex=18518368 x = \frac{185}{18} \cdot \frac{3}{68} \newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} \newlinex=185408 x = \frac{185}{408} \newlinex=512 x = \frac{5}{12} Now that we have x, we can substitute it back into one of the original equations to find y. Let's use the first equation:\newline2x32y=512 2x - \frac{3}{2}y = \frac{5}{12} \newline251232y=512 2 \cdot \frac{5}{12} - \frac{3}{2}y = \frac{5}{12} \newline5632y=512 \frac{5}{6} - \frac{3}{2}y = \frac{5}{12} Now we solve for y:\newline32y=51256 -\frac{3}{2}y = \frac{5}{12} - \frac{5}{6} \newline32y=5121012 -\frac{3}{2}y = \frac{5}{12} - \frac{10}{12} \newline32y=512 -\frac{3}{2}y = -\frac{5}{12} \newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 00\newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 11\newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 22Now we have both x and y:\newlinex=512 x = \frac{5}{12} \newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 22\newlineThe sum of x and y is:\newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 55To add the fractions, we find a common denominator:\newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 66\newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 77\newlinex=1856816 x = \frac{185}{68} \cdot \frac{1}{6} 88

More problems from Domain and range