Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[" 2.) "g(x)=(sqrt(4x^(3)-3x^(2)+2x-1))^(3)],[g^(')(x)=((4x^(3)-3x^(2)+2x-1)^(1//2))^(3)]:}

 2.) g(x)=(4x33x2+2x1)3g(x)=((4x33x2+2x1)1/2)3 \begin{array}{l}\text { 2.) } g(x)=\left(\sqrt{4 x^{3}-3 x^{2}+2 x-1}\right)^{3} \\ g^{\prime}(x)=\left(\left(4 x^{3}-3 x^{2}+2 x-1\right)^{1 / 2}\right)^{3}\end{array}

Full solution

Q.  2.) g(x)=(4x33x2+2x1)3g(x)=((4x33x2+2x1)1/2)3 \begin{array}{l}\text { 2.) } g(x)=\left(\sqrt{4 x^{3}-3 x^{2}+2 x-1}\right)^{3} \\ g^{\prime}(x)=\left(\left(4 x^{3}-3 x^{2}+2 x-1\right)^{1 / 2}\right)^{3}\end{array}
  1. Apply Chain Rule: To find the derivative of the function g(x)=(4x33x2+2x1)3 g(x) = (\sqrt{4x^3 - 3x^2 + 2x - 1})^3 , we will use the chain rule. The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.
  2. Identify Functions: First, let's identify the outer function and the inner function. The outer function is u3 u^3 where u u is the inner function. The inner function is 4x33x2+2x1 \sqrt{4x^3 - 3x^2 + 2x - 1} , which can also be written as (4x33x2+2x1)1/2 (4x^3 - 3x^2 + 2x - 1)^{1/2} .
  3. Derivative of Outer Function: The derivative of the outer function u3 u^3 with respect to u u is 3u2 3u^2 . We will later substitute u u with the inner function.
  4. Derivative of Inner Function: Now, we need to find the derivative of the inner function (4x33x2+2x1)1/2 (4x^3 - 3x^2 + 2x - 1)^{1/2} . To do this, we use the power rule combined with the chain rule. The derivative of u1/2 u^{1/2} with respect to u u is 12u1/2 \frac{1}{2}u^{-1/2} .
  5. Combine Derivatives: Next, we need to find the derivative of 4x33x2+2x1 4x^3 - 3x^2 + 2x - 1 with respect to x x . Using the power rule, the derivative is 12x26x+2 12x^2 - 6x + 2 .
  6. Final Derivative: Now we can combine all the parts. The derivative of the inner function with respect to x x is 12(4x33x2+2x1)1/2(12x26x+2) \frac{1}{2}(4x^3 - 3x^2 + 2x - 1)^{-1/2} \cdot (12x^2 - 6x + 2) .
  7. Simplify Expression: Finally, we multiply the derivative of the outer function by the derivative of the inner function to get the derivative of the composite function:\newlineg(x)=3(4x33x2+2x1)212(4x33x2+2x1)1/2(12x26x+2) g'(x) = 3(\sqrt{4x^3 - 3x^2 + 2x - 1})^2 \cdot \frac{1}{2}(4x^3 - 3x^2 + 2x - 1)^{-1/2} \cdot (12x^2 - 6x + 2)
  8. Simplify Expression: Finally, we multiply the derivative of the outer function by the derivative of the inner function to get the derivative of the composite function:\newlineg(x)=3(4x33x2+2x1)212(4x33x2+2x1)1/2(12x26x+2) g'(x) = 3(\sqrt{4x^3 - 3x^2 + 2x - 1})^2 \cdot \frac{1}{2}(4x^3 - 3x^2 + 2x - 1)^{-1/2} \cdot (12x^2 - 6x + 2) Simplify the expression by canceling out the (4x33x2+2x1)1/2 (4x^3 - 3x^2 + 2x - 1)^{-1/2} term in the derivative of the inner function with one of the (4x33x2+2x1)1/2 (4x^3 - 3x^2 + 2x - 1)^{1/2} terms in the outer function's derivative:\newlineg(x)=312(12x26x+2) g'(x) = 3 \cdot \frac{1}{2} \cdot (12x^2 - 6x + 2) \newlineg(x)=32(12x26x+2) g'(x) = \frac{3}{2} \cdot (12x^2 - 6x + 2) \newlineg(x)=18x29x+3 g'(x) = 18x^2 - 9x + 3

More problems from Interpret functions using everyday language