Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
(2)/((3x)^(-4))

Simplify.\newline2(3x)4 \frac{2}{(3 x)^{-4}}

Full solution

Q. Simplify.\newline2(3x)4 \frac{2}{(3 x)^{-4}}
  1. Identify base and exponent: Identify the base and the exponent in (3x)4(3x)^{-4}.\newlineIn (3x)4(3x)^{-4}, the base is 3x3x and the exponent is 4-4.
  2. Apply negative exponent rule: Apply the negative exponent rule, which states that an=1ana^{-n} = \frac{1}{a^n}.\newlineSo, (3x)4(3x)^{-4} becomes 1(3x)4\frac{1}{(3x)^4}.
  3. Multiply by reciprocal: Multiply the fraction 22 by the reciprocal of (3x)4(3x)^{-4}.\newlineThis gives us 2×(1(3x)4)2 \times \left(\frac{1}{(3x)^4}\right).
  4. Simplify expression by multiplication: Simplify the expression by multiplying the numerators and denominators. This results in 2(3x)4\frac{2}{(3x)^4}.
  5. Expand denominator by raising powers: Expand the denominator (3x)4(3x)^4 by raising both 33 and xx to the power of 44. This gives us 234×x4\frac{2}{3^4 \times x^4}.
  6. Calculate 343^4: Calculate 343^4 to simplify the denominator further.\newline343^4 equals 8181.
  7. Substitute 8181 in denominator: Substitute 8181 for 343^4 in the denominator.\newlineThis gives us 2/(81×x4)2/(81 \times x^4).
  8. Final simplified answer: The expression is now fully simplified, and there are no further simplifications possible. The final answer is 281×x4\frac{2}{81 \times x^4}.

More problems from Evaluate rational exponents