Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Evaluate.
((2)/(3))^(-4)((2)/(3))^(3)

Evaluate.\newline(23)4(23)3 \left(\frac{2}{3}\right)^{-4}\left(\frac{2}{3}\right)^{3}

Full solution

Q. Evaluate.\newline(23)4(23)3 \left(\frac{2}{3}\right)^{-4}\left(\frac{2}{3}\right)^{3}
  1. Apply Product Rule: Understand the problem and apply the power of a product rule.\newlineWe have the expression (23)4(23)3(\frac{2}{3})^{-4}(\frac{2}{3})^{3}. To simplify this expression, we can use the power of a product rule, which states that when multiplying two expressions with the same base, we can add the exponents.
  2. Add Exponents: Add the exponents of the terms with the same base.\newlineWe have (23)4\left(\frac{2}{3}\right)^{-4} and (23)3\left(\frac{2}{3}\right)^{3}. Since the base (23)\left(\frac{2}{3}\right) is the same, we can add the exponents: 4+3-4 + 3.\newlineThe new exponent is 4+3=1-4 + 3 = -1.\newlineSo, (23)4(23)3=(23)1\left(\frac{2}{3}\right)^{-4}\left(\frac{2}{3}\right)^{3} = \left(\frac{2}{3}\right)^{-1}.
  3. Simplify Negative Exponent: Simplify the expression with the negative exponent.\newlineThe expression ((2)/(3))(1)((2)/(3))^(-1) means the reciprocal of (2/3)(2/3).\newlineSo, ((2)/(3))(1)=(3/2)((2)/(3))^(-1) = (3/2).

More problems from Multiplication with rational exponents