Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(16a^(6)b^(2))^((1)/(2))

(16a6b2)12 \left(16 a^{6} b^{2}\right)^{\frac{1}{2}}

Full solution

Q. (16a6b2)12 \left(16 a^{6} b^{2}\right)^{\frac{1}{2}}
  1. Identify base and exponents: Identify the base and the exponents in the expression (16a6b2)12(16a^{6}b^{2})^{\frac{1}{2}}. In this expression, the base is 16a6b216a^{6}b^{2} and the exponent is 12\frac{1}{2}, which indicates we are looking for the square root of the base.
  2. Apply power of power rule: Apply the power of a power rule, which states that (xm)n=xmn(x^m)^n = x^{m*n}, to each part of the base.\newline(16a6b2)12=1612a612b212(16a^{6}b^{2})^{\frac{1}{2}} = 16^{\frac{1}{2}} * a^{6*\frac{1}{2}} * b^{2*\frac{1}{2}}
  3. Simplify each part: Simplify each part separately.\newline161216^{\frac{1}{2}} is the square root of 1616, which is 44.\newlinea612a^{6\cdot\frac{1}{2}} simplifies to a3a^{3} because 612=36\cdot\frac{1}{2} = 3.\newlineb212b^{2\cdot\frac{1}{2}} simplifies to b1b^{1} or simply bb because 212=12\cdot\frac{1}{2} = 1.
  4. Combine simplified parts: Combine the simplified parts to get the final answer.\newlineThe simplified form of the expression is 4a3b4a^{3}b.

More problems from Evaluate rational exponents