Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

((16)/(81))^((3)/(4))

(1681)34 \left(\frac{16}{81}\right)^{\frac{3}{4}}

Full solution

Q. (1681)34 \left(\frac{16}{81}\right)^{\frac{3}{4}}
  1. Identify Base and Exponent: Identify the base and the exponent in (1681)(34)\left(\frac{16}{81}\right)^{\left(\frac{3}{4}\right)}.\newlineIn (1681)(34)\left(\frac{16}{81}\right)^{\left(\frac{3}{4}\right)},\newlineBase: 1681\frac{16}{81}\newlineExponent: 34\frac{3}{4}
  2. Express as Terms to Power: Express both the numerator and the denominator as terms raised to the power of 44.\newline16=2×2×2×216 = 2 \times 2 \times 2 \times 2\newline=24= 2^4\newline81=3×3×3×381 = 3 \times 3 \times 3 \times 3\newline=34= 3^4
  3. Rewrite with Individual Bases: Rewrite the expression using the individual bases raised to the power of 44. \newline(1681)34=(2434)34\left(\frac{16}{81}\right)^{\frac{3}{4}} = \left(\frac{2^4}{3^4}\right)^{\frac{3}{4}}
  4. Apply Exponent Separately: Apply the exponent to both the numerator and the denominator separately.\newline=(24)34/(34)34= (2^4)^{\frac{3}{4}} / (3^4)^{\frac{3}{4}}
  5. Simplify Exponents: Simplify the exponents by multiplying them.\newline=24(3/4)/34(3/4)= 2^{4*(3/4)} / 3^{4*(3/4)}\newline=23/33= 2^3 / 3^3
  6. Calculate Exponent Values: Calculate the values of the exponents.\newline23=2×2×2=82^3 = 2\times2\times2 = 8\newline33=3×3×3=273^3 = 3\times3\times3 = 27
  7. Write Final Simplified Value: Write the final simplified value.\newline=827= \frac{8}{27}

More problems from Evaluate rational exponents