Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[1170.16=[C ×(1*(1)/((1+0.08)^(5)))/(0.08)]+[0.4 ×(1000+2C)×(1)/((1+0.08)^(5))]+],[[0.6 ×(C ×(1-(1)/((1+0.12)^(15)))/(0.12)+(1000)/((1+0.12)^(15)))×(1)/((1+0.08)^(5))]]:}

1170.16=amp;[C×11(1+0.08)50.08]+[0.4×(1000+2C)×1(1+0.08)5]+amp;[0.6×(C×11(1+0.12)150.12+1000(1+0.12)15)×1(1+0.08)5] \begin{aligned} 1170.16= & {\left[C \times \frac{1 \cdot \frac{1}{(1+0.08)^{5}}}{0.08}\right]+\left[0.4 \times(1000+2 C) \times \frac{1}{(1+0.08)^{5}}\right]+} \\ & {\left[0.6 \times\left(C \times \frac{1-\frac{1}{(1+0.12)^{15}}}{0.12}+\frac{1000}{(1+0.12)^{15}}\right) \times \frac{1}{(1+0.08)^{5}}\right] }\end{aligned}

Full solution

Q. 1170.16=[C×11(1+0.08)50.08]+[0.4×(1000+2C)×1(1+0.08)5]+[0.6×(C×11(1+0.12)150.12+1000(1+0.12)15)×1(1+0.08)5] \begin{aligned} 1170.16= & {\left[C \times \frac{1 \cdot \frac{1}{(1+0.08)^{5}}}{0.08}\right]+\left[0.4 \times(1000+2 C) \times \frac{1}{(1+0.08)^{5}}\right]+} \\ & {\left[0.6 \times\left(C \times \frac{1-\frac{1}{(1+0.12)^{15}}}{0.12}+\frac{1000}{(1+0.12)^{15}}\right) \times \frac{1}{(1+0.08)^{5}}\right] }\end{aligned}
  1. Identify Equation Structure: Identify the given equation and understand its structure.\newlineThe equation is a financial equation that seems to involve present value calculations for different cash flows. It is structured as follows:\newline1170.16=[C×(1×(1)/((1+0.08)(5))/(0.08)]+[0.4×(1000+2C)×(1)/((1+0.08)(5))]+[0.6×(C×(1(1)/((1+0.12)(15))/(0.12)+(1000)/((1+0.12)(15)))×(1)/((1+0.08)(5))]1170.16 = [C \times (1 \times (1) / ((1 + 0.08)^{(5)}) / (0.08)] + [0.4 \times (1000 + 2C) \times (1) / ((1 + 0.08)^{(5)})] + [0.6 \times (C \times (1 - (1) / ((1 + 0.12)^{(15)}) / (0.12) + (1000) / ((1 + 0.12)^{(15)})) \times (1) / ((1 + 0.08)^{(5)})]\newlineWe need to solve for CC.
  2. Calculate Present Value Factors: Simplify the equation by calculating the present value factors for the discount rates 8%8\% and 12%12\% for the respective periods.\newlineFirst, calculate the present value factor for a period of 55 years at an 8%8\% discount rate:\newline(1+0.08)5(1 + 0.08)^{5}
  3. Substitute and Simplify Equation: Perform the calculation for the present value factor at 8%8\% for 55 years.\newline(1+0.08)5=(1.08)51.46933(1 + 0.08)^{5} = (1.08)^{5} \approx 1.46933
  4. Combine and Solve for C: Calculate the present value factor for a period of 1515 years at a 12%12\% discount rate: (1+0.12)15(1 + 0.12)^{15}
  5. Clear Denominators and Calculate: Perform the calculation for the present value factor at 12%12\% for 1515 years.\newline(1+0.12)15=(1.12)155.47395(1 + 0.12)^{15} = (1.12)^{15} \approx 5.47395
  6. Add Coefficients and Multiply Constants: Substitute the present value factors back into the equation and simplify.\newline\(1170.1616 = \left[C \times \left(\frac{11}{11.4693346933}\right) / 00.0808\right] + \left[00.44 \times \left(10001000 + 22C\right) / 11.4693346933\right] + \left[00.66 \times \left(C \times \left(11 - \frac{11}{55.4739547395}\right) / 00.1212\right) + \frac{10001000}{55.4739547395}\right] / 11.4693346933\newlineNow, we need to simplify each term.
  7. Combine C Terms and Subtract Constants: Simplify the first term of the equation:\newlineC×(1/1.46933)/0.08=C/(1.46933×0.08)=C/0.1175464C \times (1 / 1.46933) / 0.08 = C / (1.46933 \times 0.08) = C / 0.1175464
  8. Calculate Coefficients Sum: Simplify the second term of the equation:\newline0.4×(1000+2C)/1.46933=(400+0.8C)/1.469330.4 \times (1000 + 2C) / 1.46933 = (400 + 0.8C) / 1.46933
  9. Divide to Solve for C: Simplify the third term of the equation:\newline0.6×(C×(11/5.47395)/0.12)+1000/5.47395=0.6×(C×(5.473951)/(5.47395×0.12))+182.7090.6 \times (C \times (1 - 1 / 5.47395) / 0.12) + 1000 / 5.47395 = 0.6 \times (C \times (5.47395 - 1) / (5.47395 \times 0.12)) + 182.709
  10. Perform Division to Find C: Simplify the third term further: 0.6×(C×(4.47395)/(0.656874))+182.709=0.6×(C×6.81017)+182.709=4.0861C+182.7090.6 \times (C \times (4.47395) / (0.656874)) + 182.709 = 0.6 \times (C \times 6.81017) + 182.709 = 4.0861C + 182.709
  11. Perform Division to Find C: Simplify the third term further: \newline0.6×(C×(4.47395)/(0.656874))+182.709=0.6×(C×6.81017)+182.709=4.0861C+182.7090.6 \times (C \times (4.47395) / (0.656874)) + 182.709 = 0.6 \times (C \times 6.81017) + 182.709 = 4.0861C + 182.709Now, we have the simplified equation:\newline1170.16=C0.1175464+(400+0.8C)1.46933+4.0861C+182.7091170.16 = \frac{C}{0.1175464} + \frac{(400 + 0.8C)}{1.46933} + 4.0861C + 182.709\newlineCombine like terms and solve for C.
  12. Perform Division to Find C: Simplify the third term further:\newline0.6×(C×(4.47395)/(0.656874))+182.709=0.6×(C×6.81017)+182.709=4.0861C+182.7090.6 \times (C \times (4.47395) / (0.656874)) + 182.709 = 0.6 \times (C \times 6.81017) + 182.709 = 4.0861C + 182.709Now, we have the simplified equation:\newline1170.16=C0.1175464+(400+0.8C)1.46933+4.0861C+182.7091170.16 = \frac{C}{0.1175464} + \frac{(400 + 0.8C)}{1.46933} + 4.0861C + 182.709\newlineCombine like terms and solve for C.Combine the C terms and constant terms:\newline1170.16=C0.1175464+0.8C1.46933+4.0861C+182.7091170.16 = \frac{C}{0.1175464} + \frac{0.8C}{1.46933} + 4.0861C + 182.709\newlineTo combine the C terms, we need to find a common denominator or multiply through by the denominators to clear them.
  13. Perform Division to Find C: Simplify the third term further:\newline0.6×(C×(4.47395)/(0.656874))+182.709=0.6×(C×6.81017)+182.709=4.0861C+182.7090.6 \times (C \times (4.47395) / (0.656874)) + 182.709 = 0.6 \times (C \times 6.81017) + 182.709 = 4.0861C + 182.709Now, we have the simplified equation:\newline1170.16=C0.1175464+(400+0.8C)1.46933+4.0861C+182.7091170.16 = \frac{C}{0.1175464} + \frac{(400 + 0.8C)}{1.46933} + 4.0861C + 182.709\newlineCombine like terms and solve for C.Combine the C terms and constant terms:\newline1170.16=C0.1175464+0.8C1.46933+4.0861C+182.7091170.16 = \frac{C}{0.1175464} + \frac{0.8C}{1.46933} + 4.0861C + 182.709\newlineTo combine the C terms, we need to find a common denominator or multiply through by the denominators to clear them.Multiply through by the denominators to clear them:\newline1170.16×(0.1175464×1.46933)=C+0.8C×(0.1175464)+4.0861C×(0.1175464×1.46933)+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.8C \times (0.1175464) + 4.0861C \times (0.1175464 \times 1.46933) + 182.709 \times (0.1175464 \times 1.46933)\newlineCalculate the constants and coefficients.
  14. Perform Division to Find C: Simplify the third term further:\newline0.6×(C×(4.47395)/(0.656874))+182.709=0.6×(C×6.81017)+182.709=4.0861C+182.7090.6 \times (C \times (4.47395) / (0.656874)) + 182.709 = 0.6 \times (C \times 6.81017) + 182.709 = 4.0861C + 182.709Now, we have the simplified equation:\newline1170.16=C/0.1175464+(400+0.8C)/1.46933+4.0861C+182.7091170.16 = C / 0.1175464 + (400 + 0.8C) / 1.46933 + 4.0861C + 182.709\newlineCombine like terms and solve for C.Combine the C terms and constant terms:\newline1170.16=C/0.1175464+0.8C/1.46933+4.0861C+182.7091170.16 = C / 0.1175464 + 0.8C / 1.46933 + 4.0861C + 182.709\newlineTo combine the C terms, we need to find a common denominator or multiply through by the denominators to clear them.Multiply through by the denominators to clear them:\newline1170.16×(0.1175464×1.46933)=C+0.8C×(0.1175464)+4.0861C×(0.1175464×1.46933)+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.8C \times (0.1175464) + 4.0861C \times (0.1175464 \times 1.46933) + 182.709 \times (0.1175464 \times 1.46933)\newlineCalculate the constants and coefficients.Perform the calculations for the constants and coefficients:\newline1170.16×(0.1175464×1.46933)=C+0.09403712C+0.702073C+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.09403712C + 0.702073C + 182.709 \times (0.1175464 \times 1.46933)\newlineNow, add the coefficients of C together and multiply the constants.
  15. Perform Division to Find C: Simplify the third term further:\newline0.6×(C×(4.47395)/(0.656874))+182.709=0.6×(C×6.81017)+182.709=4.0861C+182.7090.6 \times (C \times (4.47395) / (0.656874)) + 182.709 = 0.6 \times (C \times 6.81017) + 182.709 = 4.0861C + 182.709Now, we have the simplified equation:\newline1170.16=C0.1175464+(400+0.8C)1.46933+4.0861C+182.7091170.16 = \frac{C}{0.1175464} + \frac{(400 + 0.8C)}{1.46933} + 4.0861C + 182.709\newlineCombine like terms and solve for C.Combine the C terms and constant terms:\newline1170.16=C0.1175464+0.8C1.46933+4.0861C+182.7091170.16 = \frac{C}{0.1175464} + \frac{0.8C}{1.46933} + 4.0861C + 182.709\newlineTo combine the C terms, we need to find a common denominator or multiply through by the denominators to clear them.Multiply through by the denominators to clear them:\newline1170.16×(0.1175464×1.46933)=C+0.8C×(0.1175464)+4.0861C×(0.1175464×1.46933)+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.8C \times (0.1175464) + 4.0861C \times (0.1175464 \times 1.46933) + 182.709 \times (0.1175464 \times 1.46933)\newlineCalculate the constants and coefficients.Perform the calculations for the constants and coefficients:\newline1170.16×(0.1175464×1.46933)=C+0.09403712C+0.702073C+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.09403712C + 0.702073C + 182.709 \times (0.1175464 \times 1.46933)\newlineNow, add the coefficients of C together and multiply the constants.Add the coefficients of C together and multiply the constants:\newline1170.16×0.172703=C+0.09403712C+0.702073C+182.709×0.1727031170.16 \times 0.172703 = C + 0.09403712C + 0.702073C + 182.709 \times 0.172703\newlineNow, calculate the products:\newline202.202=C+0.09403712C+0.702073C+31.556202.202 = C + 0.09403712C + 0.702073C + 31.556\newlineCombine the C terms and subtract the constant from both sides.
  16. Perform Division to Find C: Simplify the third term further:\newline0.6×(C×(4.47395)/(0.656874))+182.709=0.6×(C×6.81017)+182.709=4.0861C+182.7090.6 \times (C \times (4.47395) / (0.656874)) + 182.709 = 0.6 \times (C \times 6.81017) + 182.709 = 4.0861C + 182.709Now, we have the simplified equation:\newline1170.16=C0.1175464+(400+0.8C)1.46933+4.0861C+182.7091170.16 = \frac{C}{0.1175464} + \frac{(400 + 0.8C)}{1.46933} + 4.0861C + 182.709\newlineCombine like terms and solve for C.Combine the C terms and constant terms:\newline1170.16=C0.1175464+0.8C1.46933+4.0861C+182.7091170.16 = \frac{C}{0.1175464} + \frac{0.8C}{1.46933} + 4.0861C + 182.709\newlineTo combine the C terms, we need to find a common denominator or multiply through by the denominators to clear them.Multiply through by the denominators to clear them:\newline1170.16×(0.1175464×1.46933)=C+0.8C×(0.1175464)+4.0861C×(0.1175464×1.46933)+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.8C \times (0.1175464) + 4.0861C \times (0.1175464 \times 1.46933) + 182.709 \times (0.1175464 \times 1.46933)\newlineCalculate the constants and coefficients.Perform the calculations for the constants and coefficients:\newline1170.16×(0.1175464×1.46933)=C+0.09403712C+0.702073C+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.09403712C + 0.702073C + 182.709 \times (0.1175464 \times 1.46933)\newlineNow, add the coefficients of C together and multiply the constants.Add the coefficients of C together and multiply the constants:\newline1170.16×0.172703=C+0.09403712C+0.702073C+182.709×0.1727031170.16 \times 0.172703 = C + 0.09403712C + 0.702073C + 182.709 \times 0.172703\newlineNow, calculate the products:\newline202.202=C+0.09403712C+0.702073C+31.556202.202 = C + 0.09403712C + 0.702073C + 31.556\newlineCombine the C terms and subtract the constant from both sides.Combine the C terms and subtract the constant from both sides:\newline202.202=(1+0.09403712+0.702073)C+31.556202.202 = (1 + 0.09403712 + 0.702073)C + 31.556\newline202.20231.556=(1+0.09403712+0.702073)C202.202 - 31.556 = (1 + 0.09403712 + 0.702073)C\newlineNow, calculate the sum of the coefficients and the difference of the constants.
  17. Perform Division to Find C: Simplify the third term further:\newline0.6×(C×(4.47395)/(0.656874))+182.709=0.6×(C×6.81017)+182.709=4.0861C+182.7090.6 \times (C \times (4.47395) / (0.656874)) + 182.709 = 0.6 \times (C \times 6.81017) + 182.709 = 4.0861C + 182.709Now, we have the simplified equation:\newline1170.16=C0.1175464+(400+0.8C)1.46933+4.0861C+182.7091170.16 = \frac{C}{0.1175464} + \frac{(400 + 0.8C)}{1.46933} + 4.0861C + 182.709\newlineCombine like terms and solve for C.Combine the C terms and constant terms:\newline1170.16=C0.1175464+0.8C1.46933+4.0861C+182.7091170.16 = \frac{C}{0.1175464} + \frac{0.8C}{1.46933} + 4.0861C + 182.709\newlineTo combine the C terms, we need to find a common denominator or multiply through by the denominators to clear them.Multiply through by the denominators to clear them:\newline1170.16×(0.1175464×1.46933)=C+0.8C×(0.1175464)+4.0861C×(0.1175464×1.46933)+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.8C \times (0.1175464) + 4.0861C \times (0.1175464 \times 1.46933) + 182.709 \times (0.1175464 \times 1.46933)\newlineCalculate the constants and coefficients.Perform the calculations for the constants and coefficients:\newline1170.16×(0.1175464×1.46933)=C+0.09403712C+0.702073C+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.09403712C + 0.702073C + 182.709 \times (0.1175464 \times 1.46933)\newlineNow, add the coefficients of C together and multiply the constants.Add the coefficients of C together and multiply the constants:\newline1170.16×0.172703=C+0.09403712C+0.702073C+182.709×0.1727031170.16 \times 0.172703 = C + 0.09403712C + 0.702073C + 182.709 \times 0.172703\newlineNow, calculate the products:\newline202.202=C+0.09403712C+0.702073C+31.556202.202 = C + 0.09403712C + 0.702073C + 31.556\newlineCombine the C terms and subtract the constant from both sides.Combine the C terms and subtract the constant from both sides:\newline202.202=(1+0.09403712+0.702073)C+31.556202.202 = (1 + 0.09403712 + 0.702073)C + 31.556\newline202.20231.556=(1+0.09403712+0.702073)C202.202 - 31.556 = (1 + 0.09403712 + 0.702073)C\newlineNow, calculate the sum of the coefficients and the difference of the constants.Calculate the sum of the coefficients and the difference of the constants:\newline170.646=(1.79611012)C170.646 = (1.79611012)C\newlineNow, divide both sides by the sum of the coefficients to solve for C.
  18. Perform Division to Find C: Simplify the third term further:\newline0.6×(C×(4.47395)/(0.656874))+182.709=0.6×(C×6.81017)+182.709=4.0861C+182.7090.6 \times (C \times (4.47395) / (0.656874)) + 182.709 = 0.6 \times (C \times 6.81017) + 182.709 = 4.0861C + 182.709Now, we have the simplified equation:\newline1170.16=C/0.1175464+(400+0.8C)/1.46933+4.0861C+182.7091170.16 = C / 0.1175464 + (400 + 0.8C) / 1.46933 + 4.0861C + 182.709\newlineCombine like terms and solve for C.Combine the C terms and constant terms:\newline1170.16=C/0.1175464+0.8C/1.46933+4.0861C+182.7091170.16 = C / 0.1175464 + 0.8C / 1.46933 + 4.0861C + 182.709\newlineTo combine the C terms, we need to find a common denominator or multiply through by the denominators to clear them.Multiply through by the denominators to clear them:\newline1170.16×(0.1175464×1.46933)=C+0.8C×(0.1175464)+4.0861C×(0.1175464×1.46933)+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.8C \times (0.1175464) + 4.0861C \times (0.1175464 \times 1.46933) + 182.709 \times (0.1175464 \times 1.46933)\newlineCalculate the constants and coefficients.Perform the calculations for the constants and coefficients:\newline1170.16×(0.1175464×1.46933)=C+0.09403712C+0.702073C+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.09403712C + 0.702073C + 182.709 \times (0.1175464 \times 1.46933)\newlineNow, add the coefficients of C together and multiply the constants.Add the coefficients of C together and multiply the constants:\newline1170.16×0.172703=C+0.09403712C+0.702073C+182.709×0.1727031170.16 \times 0.172703 = C + 0.09403712C + 0.702073C + 182.709 \times 0.172703\newlineNow, calculate the products:\newline202.202=C+0.09403712C+0.702073C+31.556202.202 = C + 0.09403712C + 0.702073C + 31.556\newlineCombine the C terms and subtract the constant from both sides.Combine the C terms and subtract the constant from both sides:\newline202.202 = (1 + 0.09403712 + 0.702073)C + 31.556\(\newline202.202 - 31.556 = (1 + 0.09403712 + 0.702073)C\)\newlineNow, calculate the sum of the coefficients and the difference of the constants.Calculate the sum of the coefficients and the difference of the constants:\newline170.646=(1.79611012)C170.646 = (1.79611012)C\newlineNow, divide both sides by the sum of the coefficients to solve for C.Divide both sides by the sum of the coefficients to solve for C:\newlineC=170.646/1.79611012C = 170.646 / 1.79611012\newlineNow, perform the division to find the value of C.
  19. Perform Division to Find C: Simplify the third term further:\newline0.6×(C×(4.47395)/(0.656874))+182.709=0.6×(C×6.81017)+182.709=4.0861C+182.7090.6 \times (C \times (4.47395) / (0.656874)) + 182.709 = 0.6 \times (C \times 6.81017) + 182.709 = 4.0861C + 182.709Now, we have the simplified equation:\newline1170.16=C/0.1175464+(400+0.8C)/1.46933+4.0861C+182.7091170.16 = C / 0.1175464 + (400 + 0.8C) / 1.46933 + 4.0861C + 182.709\newlineCombine like terms and solve for C.Combine the C terms and constant terms:\newline1170.16=C/0.1175464+0.8C/1.46933+4.0861C+182.7091170.16 = C / 0.1175464 + 0.8C / 1.46933 + 4.0861C + 182.709\newlineTo combine the C terms, we need to find a common denominator or multiply through by the denominators to clear them.Multiply through by the denominators to clear them:\newline1170.16×(0.1175464×1.46933)=C+0.8C×(0.1175464)+4.0861C×(0.1175464×1.46933)+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.8C \times (0.1175464) + 4.0861C \times (0.1175464 \times 1.46933) + 182.709 \times (0.1175464 \times 1.46933)\newlineCalculate the constants and coefficients.Perform the calculations for the constants and coefficients:\newline1170.16×(0.1175464×1.46933)=C+0.09403712C+0.702073C+182.709×(0.1175464×1.46933)1170.16 \times (0.1175464 \times 1.46933) = C + 0.09403712C + 0.702073C + 182.709 \times (0.1175464 \times 1.46933)\newlineNow, add the coefficients of C together and multiply the constants.Add the coefficients of C together and multiply the constants:\newline1170.16×0.172703=C+0.09403712C+0.702073C+182.709×0.1727031170.16 \times 0.172703 = C + 0.09403712C + 0.702073C + 182.709 \times 0.172703\newlineNow, calculate the products:\newline202.202=C+0.09403712C+0.702073C+31.556202.202 = C + 0.09403712C + 0.702073C + 31.556\newlineCombine the C terms and subtract the constant from both sides.Combine the C terms and subtract the constant from both sides:\newline202.202 = (1 + 0.09403712 + 0.702073)C + 31.556\(\newline202.202 - 31.556 = (1 + 0.09403712 + 0.702073)C\)\newlineNow, calculate the sum of the coefficients and the difference of the constants.Calculate the sum of the coefficients and the difference of the constants:\newline170.646=(1.79611012)C170.646 = (1.79611012)C\newlineNow, divide both sides by the sum of the coefficients to solve for C.Divide both sides by the sum of the coefficients to solve for C:\newlineC=170.646/1.79611012C = 170.646 / 1.79611012\newlineNow, perform the division to find the value of C.Perform the division to find the value of C:\newline1170.16=C/0.1175464+(400+0.8C)/1.46933+4.0861C+182.7091170.16 = C / 0.1175464 + (400 + 0.8C) / 1.46933 + 4.0861C + 182.70900\newlineWe have found the value of C that satisfies the given equation.

More problems from Properties of multiplication