Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify.
(-(1057)/(10)+(1283 i)/(10))x^(3)+((273)/(10)-(121 i)/(10))x^(2)+((971)/(10)+(281 i)/(5))x+(87 i)/(5)-(736)/(5)

Simplify.\newline(105710+1283i10)x3+(27310121i10)x2+(97110+281i5)x+87i57365 (-\frac{1057}{10}+\frac{1283 i}{10}) x^{3} + (\frac{273}{10}-\frac{121 i}{10}) x^{2} + (\frac{971}{10}+\frac{281 i}{5}) x + \frac{87 i}{5}-\frac{736}{5}

Full solution

Q. Simplify.\newline(105710+1283i10)x3+(27310121i10)x2+(97110+281i5)x+87i57365 (-\frac{1057}{10}+\frac{1283 i}{10}) x^{3} + (\frac{273}{10}-\frac{121 i}{10}) x^{2} + (\frac{971}{10}+\frac{281 i}{5}) x + \frac{87 i}{5}-\frac{736}{5}
  1. Given Polynomial Expression: We are given a complex polynomial expression: :[(105710+1283i10)x3+(27310121i10)x2],[+(97110+281i5)x+87i57365]:{:[\left(-\frac{1057}{10}+\frac{1283 i}{10}\right)x^{3}+\left(\frac{273}{10}-\frac{121 i}{10}\right)x^{2}],[+\left(\frac{971}{10}+\frac{281 i}{5}\right)x+\frac{87 i}{5}-\frac{736}{5}]:} First, we will simplify the coefficients of each term by performing the arithmetic operations.
  2. Simplify x3x^3 Term: Simplify the coefficient of the x3x^3 term: (1057/10)+(1283i/10)=105.7+128.3i(-1057/10) + (1283i/10) = -105.7 + 128.3i
  3. Simplify x2x^2 Term: Simplify the coefficient of the x2x^2 term: 27310\frac{273}{10} - 121i10\frac{121i}{10} = 27.327.3 - 12.1i12.1i
  4. Simplify xx Term: Simplify the coefficient of the xx term: 97110+281i5\frac{971}{10} + \frac{281i}{5} = 97.1+56.2i97.1 + 56.2i
  5. Simplify Constant Term: Simplify the constant term:\newline87i57365\frac{87i}{5} - \frac{736}{5}\newline= 17.4i147.217.4i - 147.2
  6. Rewrite Polynomial: Now, we rewrite the polynomial with the simplified coefficients: (105.7+128.3i)x3+(27.312.1i)x2+(97.1+56.2i)x+(17.4i147.2)(-105.7 + 128.3i)x^3 + (27.3 - 12.1i)x^2 + (97.1 + 56.2i)x + (17.4i - 147.2)

More problems from Multiplication with rational exponents