Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[10^(x+2y)=5],[10^(3x+4y)=50]:}

10x+2y=5103x+4y=50 \begin{array}{l}10^{x+2 y}=5 \\ 10^{3 x+4 y}=50\end{array}

Full solution

Q. 10x+2y=5103x+4y=50 \begin{array}{l}10^{x+2 y}=5 \\ 10^{3 x+4 y}=50\end{array}
  1. Convert to Logarithmic Form: Step 11: Convert the equations to logarithmic form to simplify the exponents.\newline- Equation 11: 10x+2y=510^{x+2y} = 5 becomes log10(5)=x+2y\log_{10}(5) = x + 2y\newline- Equation 22: 103x+4y=5010^{3x+4y} = 50 becomes log10(50)=3x+4y\log_{10}(50) = 3x + 4y
  2. Calculate Logarithmic Values: Step 22: Calculate the logarithmic values.\newline- log10(5)0.6990\log_{10}(5) \approx 0.6990\newline- log10(50)=log10(5×10)=log10(5)+log10(10)=0.6990+1=1.6990\log_{10}(50) = \log_{10}(5\times10) = \log_{10}(5) + \log_{10}(10) = 0.6990 + 1 = 1.6990
  3. Substitute Values into Equations: Step 33: Substitute the logarithmic values back into the equations.\newline- 0.6990=x+2y0.6990 = x + 2y\newline- 1.6990=3x+4y1.6990 = 3x + 4y
  4. Solve System of Equations: Step 44: Solve the system of equations using elimination or substitution.\newline- Multiply the first equation by 33: 3×0.6990=3x+6y3 \times 0.6990 = 3x + 6y\newline- Subtract the first new equation from the second original equation:\newline 1.69903×0.6990=3x+4y(3x+6y)1.6990 - 3 \times 0.6990 = 3x + 4y - (3x + 6y)\newline 1.69902.0970=2y1.6990 - 2.0970 = -2y\newline 0.6020=2y0.6020 = -2y\newline y=0.3010y = -0.3010
  5. Find Values of x and y: Step 55: Substitute the value of y back into one of the original equations to find x.\newline- 0.6990=x+2(0.3010)0.6990 = x + 2(-0.3010)\newline- 0.6990=x0.60200.6990 = x - 0.6020\newline- x=0.6990+0.6020x = 0.6990 + 0.6020\newline- x=1.3010x = 1.3010

More problems from Find higher derivatives of rational and radical functions