Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(1secxtanx)(1secx+tanx)\left(\frac{1}{\sec x - \tan x}\right) - \left(\frac{1}{\sec x + \tan x}\right)

Full solution

Q. (1secxtanx)(1secx+tanx)\left(\frac{1}{\sec x - \tan x}\right) - \left(\frac{1}{\sec x + \tan x}\right)
  1. Given Expression: We are given the expression 1secxtanx1secx+tanx\frac{1}{\sec x - \tan x} - \frac{1}{\sec x + \tan x}. To simplify this expression, we will find a common denominator and combine the fractions.
  2. Find Common Denominator: The common denominator for the two fractions 1secxtanx\frac{1}{\sec x - \tan x} and 1secx+tanx\frac{1}{\sec x + \tan x} is (secxtanx)(secx+tanx)(\sec x - \tan x)(\sec x + \tan x). We will multiply the numerator and denominator of each fraction by the conjugate of its denominator to get the common denominator.
  3. Multiply by Conjugate: For the first fraction, we multiply the numerator and denominator by secx+tanx\sec x + \tan x:\newline1secxtanxsecx+tanxsecx+tanx=secx+tanx(secxtanx)(secx+tanx)\frac{1}{\sec x - \tan x} \cdot \frac{\sec x + \tan x}{\sec x + \tan x} = \frac{\sec x + \tan x}{(\sec x - \tan x)(\sec x + \tan x)}.
  4. Combine Fractions: For the second fraction, we multiply the numerator and denominator by secxtanx\sec x - \tan x:\newline1secx+tanxsecxtanxsecxtanx=secxtanx(secx+tanx)(secxtanx)\frac{1}{\sec x + \tan x} \cdot \frac{\sec x - \tan x}{\sec x - \tan x} = \frac{\sec x - \tan x}{(\sec x + \tan x)(\sec x - \tan x)}.
  5. Subtract Numerators: Now we combine the two fractions with the common denominator:\newlinesecx+tanx(secxtanx)(secx+tanx)secxtanx(secx+tanx)(secxtanx)\frac{\sec x + \tan x}{(\sec x - \tan x)(\sec x + \tan x)} - \frac{\sec x - \tan x}{(\sec x + \tan x)(\sec x - \tan x)}.
  6. Simplify Numerator: We subtract the numerators and keep the common denominator:\newline(secx+tanx)(secxtanx)(secxtanx)(secx+tanx)\frac{(\sec x + \tan x) - (\sec x - \tan x)}{(\sec x - \tan x)(\sec x + \tan x)}.
  7. Denominator Simplification: Simplify the numerator by combining like terms:\newlinesecx+tanxsecx+tanx=2tanx\sec x + \tan x - \sec x + \tan x = 2\tan x.
  8. Apply Pythagorean Identity: The denominator is the product of a binomial and its conjugate, which is a difference of squares:\newline(secxtanx)(secx+tanx)=sec2xtan2x(\sec x - \tan x)(\sec x + \tan x) = \sec^2 x - \tan^2 x.
  9. Final Simplified Expression: We know that sec2xtan2x=1\sec^2 x - \tan^2 x = 1 from the Pythagorean identity for secant and tangent:\newlinesec2x=1+tan2x\sec^2 x = 1 + \tan^2 x, so sec2xtan2x=1\sec^2 x - \tan^2 x = 1.
  10. Final Simplified Expression: We know that sec2xtan2x=1\sec^2 x - \tan^2 x = 1 from the Pythagorean identity for secant and tangent:\newlinesec2x=1+tan2x\sec^2 x = 1 + \tan^2 x, so sec2xtan2x=1\sec^2 x - \tan^2 x = 1.Now we can write the simplified expression:\newline2tanx1=2tanx\frac{2\tan x}{1} = 2\tan x.

More problems from Power rule with rational exponents