Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify: (1+sec(-x))/(sin(-x)+tan(-x))=-csc x

Simplify: 1+sec(x)sin(x)+tan(x)=cscx\frac{1+\sec(-x)}{\sin(-x)+\tan(-x)}=-\csc x

Full solution

Q. Simplify: 1+sec(x)sin(x)+tan(x)=cscx\frac{1+\sec(-x)}{\sin(-x)+\tan(-x)}=-\csc x
  1. Simplify using trigonometric identities: Simplify the left-hand side using trigonometric identities; sec(x)=secx\sec(-x) = \sec x, sin(x)=sinx\sin(-x) = -\sin x, tan(x)=tanx\tan(-x) = -\tan x. Calculation: 1+secxsinxtanx\frac{1 + \sec x}{-\sin x - \tan x}
  2. Factor out negative sign: Rewrite the expression by factoring out a negative sign from the denominator.\newlineCalculation: (1+secx)/((sinx+tanx))=(1+secx)/(sinx+tanx)(1 + \sec x)/(-(\sin x + \tan x)) = -(1 + \sec x)/(\sin x + \tan x)
  3. Rewrite using identities: Use the identity secx=1cosx\sec x = \frac{1}{\cos x} and tanx=sinxcosx\tan x = \frac{\sin x}{\cos x} to rewrite secx\sec x and tanx\tan x.\newlineCalculation: (1+1cosxsinx+sinxcosx)-\left(\frac{1 + \frac{1}{\cos x}}{\sin x + \frac{\sin x}{\cos x}}\right)
  4. Simplify denominator: Simplify the denominator by getting a common denominator.\newlineCalculation: 1+1cosxsinx(1+1cosx)/cosx-\frac{1 + \frac{1}{\cos x}}{\sin x \cdot \left(1 + \frac{1}{\cos x}\right)/\cos x}
  5. Cancel out common terms: Cancel out (1+1cosx)(1 + \frac{1}{\cos x}) in the numerator and denominator.\newlineCalculation: cosxsinx-\frac{\cos x}{\sin x}

More problems from Sum of finite series starts from 1