Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

/_1 and 
/_2 are vertical angles. If 
m/_1=(2x+13)^(@) and 
m/_2=(7x+28)^(@), then find the measure of 
/_2.
Answer:

1 \angle 1 and 2 \angle 2 are vertical angles. If m1=(2x+13) \mathrm{m} \angle 1=(2 x+13)^{\circ} and m2=(7x+28) \mathrm{m} \angle 2=(7 x+28)^{\circ} , then find the measure of 2 \angle 2 .\newlineAnswer:

Full solution

Q. 1 \angle 1 and 2 \angle 2 are vertical angles. If m1=(2x+13) \mathrm{m} \angle 1=(2 x+13)^{\circ} and m2=(7x+28) \mathrm{m} \angle 2=(7 x+28)^{\circ} , then find the measure of 2 \angle 2 .\newlineAnswer:
  1. Vertical angles congruent: Vertical angles are congruent, so m/1=m/2m/\angle 1 = m/\angle 2. Set the expressions for m/1m/\angle 1 and m/2m/\angle 2 equal to each other to solve for xx. \newline(2x+13)=(7x+28)(2x + 13) = (7x + 28)
  2. Set expressions equal: Subtract 2x2x from both sides to get the xx terms on one side.\newline(2x+13)2x=(7x+28)2x(2x + 13) - 2x = (7x + 28) - 2x\newline13=5x+2813 = 5x + 28
  3. Subtract xx terms: Subtract 2828 from both sides to isolate the xx term.\newline1328=5x+282813 - 28 = 5x + 28 - 28\newline15=5x-15 = 5x
  4. Isolate xx term: Divide both sides by 55 to solve for xx.\newline155=5x5-\frac{15}{5} = \frac{5x}{5}\newlinex=3x = -3
  5. Divide by 55: Now that we have the value of xx, substitute it back into the expression for m/angle 2m/\text{angle } 2 to find the measure of angle 22.m/angle 2=(7x+28)m/\text{angle } 2 = (7x + 28)m/angle 2=(7(3)+28)m/\text{angle } 2 = (7(-3) + 28)
  6. Substitute xx value: Calculate the value of m/angle 2m/\text{angle } 2.m/angle 2=(21+28)m/\text{angle } 2 = (-21 + 28)m/angle 2=7m/\text{angle } 2 = 7 degrees

More problems from Transformations of quadratic functions