Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{[(1)/(4)x-(1)/(3)y=(3)/(2)],[(1)/(4)x+(3)/(4)y=(5)/(2)]:}

{14x13y=3214x+34y=52 \left\{\begin{array}{l}\frac{1}{4} x-\frac{1}{3} y=\frac{3}{2} \\ \frac{1}{4} x+\frac{3}{4} y=\frac{5}{2}\end{array}\right.

Full solution

Q. {14x13y=3214x+34y=52 \left\{\begin{array}{l}\frac{1}{4} x-\frac{1}{3} y=\frac{3}{2} \\ \frac{1}{4} x+\frac{3}{4} y=\frac{5}{2}\end{array}\right.
  1. Write Equations: Step 11: Write down the system of equations.\newline(14)x(13)y=32(\frac{1}{4})x - (\frac{1}{3})y = \frac{3}{2}, (14)x+(34)y=52(\frac{1}{4})x + (\frac{3}{4})y = \frac{5}{2}
  2. Clear Fractions: Step 22: Multiply the first equation by 1212 to clear the fractions.\newline12×[(14)x(13)y=32]12 \times \left[\left(\frac{1}{4}\right)x - \left(\frac{1}{3}\right)y = \frac{3}{2}\right]\newline3x4y=183x - 4y = 18
  3. Solve for x: Step 33: Multiply the second equation by 44 to clear the fractions.\newline4×[(14)x+(34)y=52]4 \times \left[\left(\frac{1}{4}\right)x + \left(\frac{3}{4}\right)y = \frac{5}{2}\right]\newlinex+3y=10x + 3y = 10
  4. Solve for y: Step 44: Solve for x from the second equation.\newlinex=103yx = 10 - 3y
  5. Substitute x: Step 55: Substitute x in the first equation.\newline3(103y)4y=183(10 - 3y) - 4y = 18\newline309y4y=1830 - 9y - 4y = 18\newline3013y=1830 - 13y = 18
  6. Solve for y: Step 66: Solve for y.\newline13y=1830-13y = 18 - 30\newline13y=12-13y = -12\newliney=12/13y = -12 / -13\newliney=1213y = \frac{12}{13}
  7. Substitute y: Step 77: Substitute yy back into the equation for xx.x=103(1213)x = 10 - 3\left(\frac{12}{13}\right)x=103613x = 10 - \frac{36}{13}x=130133613x = \frac{130}{13} - \frac{36}{13}x=9413x = \frac{94}{13}

More problems from Multiplication with rational exponents